Spaces:
Sleeping
Sleeping
File size: 12,539 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based rezero-transformer block layer (Transformer with ReZero)."""
# pylint: disable=g-classes-have-attributes
from typing import Optional
from absl import logging
import gin
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import util
@tf_keras.utils.register_keras_serializable(package="Text")
@gin.configurable
class ReZeroTransformer(tf_keras.layers.Layer):
"""Transformer layer with ReZero.
This layer implements the Transformer from "Attention Is All You Need".
(https://arxiv.org/abs/1706.03762).
The residual connection implements the ReZero method.
(https://arxiv.org/abs/2003.04887)
Args:
num_attention_heads: Number of attention heads.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network.
dropout_rate: Dropout probability for the post-attention and output dropout.
attention_dropout_rate: Dropout probability for within the attention layer.
output_range: the sequence output range, [0, output_range) by slicing the
target sequence. `None` means the target sequence is not sliced.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
use_layer_norm: If add layer_norm on top of the ReZero.
share_rezero: If attention layer and FFN layer share the same alpha.
"""
def __init__(self,
num_attention_heads,
inner_dim=768,
inner_activation=tf_utils.get_activation("gelu"),
dropout_rate=0.0,
attention_dropout_rate=0.0,
output_range=None,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
use_layer_norm=False,
share_rezero=True,
**kwargs):
# attention_dropout will override attention_dropout_rate.
# This is to unify the input params with TransformerEncoderBlock.
attention_dropout_rate = kwargs.pop("attention_dropout",
attention_dropout_rate)
dropout_rate = kwargs.pop("output_dropout", dropout_rate)
inner_dim = kwargs.pop("intermediate_size", inner_dim)
inner_activation = kwargs.pop("intermediate_activation", inner_activation)
util.filter_kwargs(kwargs)
super().__init__(**kwargs)
# Deprecation warning.
if output_range is not None:
logging.warning("`output_range` is avaliable as an argument for `call()`."
"The `output_range` as __init__ argument is deprecated.")
self._num_heads = num_attention_heads
self._inner_dim = inner_dim
self._inner_activation = inner_activation
self._attention_dropout_rate = attention_dropout_rate
self._dropout_rate = dropout_rate
self._output_range = output_range
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
self._use_layer_norm = use_layer_norm
self._share_rezero = share_rezero
def build(self, input_shape):
if isinstance(input_shape, tf.TensorShape):
input_tensor_shape = input_shape
elif isinstance(input_shape, (list, tuple)):
input_tensor_shape = tf.TensorShape(input_shape[0])
else:
raise ValueError(
"The type of input shape argument is not supported, got: %s" %
type(input_shape))
if len(input_tensor_shape.as_list()) != 3:
raise ValueError("TransformerLayer expects a three-dimensional input of "
"shape [batch, sequence, width].")
batch_size, sequence_length, hidden_size = input_tensor_shape
if len(input_shape) == 2:
mask_tensor_shape = tf.TensorShape(input_shape[1])
expected_mask_tensor_shape = tf.TensorShape(
[batch_size, sequence_length, sequence_length])
if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
raise ValueError("When passing a mask tensor to TransformerLayer, the "
"mask tensor must be of shape [batch, "
"sequence_length, sequence_length] (here %s). Got a "
"mask tensor of shape %s." %
(expected_mask_tensor_shape, mask_tensor_shape))
if hidden_size % self._num_heads != 0:
raise ValueError(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, self._num_heads))
self._attention_head_size = int(hidden_size // self._num_heads)
common_kwargs = dict(
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
self._attention_layer = tf_keras.layers.MultiHeadAttention(
num_heads=self._num_heads,
key_dim=self._attention_head_size,
dropout=self._attention_dropout_rate,
name="self_attention",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
self._attention_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
if self._use_layer_norm:
# Use float32 in layernorm for numeric stability.
# It is probably safe in mixed_float16, but we haven't validated this yet.
self._attention_layer_norm = (
tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm",
axis=-1,
epsilon=1e-12,
dtype=tf.float32))
self._intermediate_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, self._inner_dim),
bias_axes="d",
name="intermediate",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
policy = tf_keras.mixed_precision.global_policy()
if policy.name == "mixed_bfloat16":
# bfloat16 causes BERT with the LAMB optimizer to not converge
# as well, so we use float32.
# TODO(b/154538392): Investigate this.
policy = tf.float32
self._inner_activation_layer = tf_keras.layers.Activation(
self._inner_activation, dtype=policy)
self._output_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, hidden_size),
bias_axes="d",
name="output",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
self._output_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
if self._use_layer_norm:
# Use float32 in layernorm for numeric stability.
self._output_layer_norm = tf_keras.layers.LayerNormalization(
name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
self._rezero_a = self.add_weight(
name="rezero_alpha",
initializer=tf_keras.initializers.Zeros(),
trainable=True,
dtype=tf.float32)
if self._share_rezero:
self._rezero_a_ffn = self._rezero_a
else:
self._rezero_a_ffn = self.add_weight(
name="rezero_alpha_ffn",
initializer=tf_keras.initializers.Zeros(),
trainable=True,
dtype=tf.float32)
super().build(input_shape)
def get_config(self):
config = {
"num_attention_heads":
self._num_heads,
"inner_dim":
self._inner_dim,
"inner_activation":
self._inner_activation,
"dropout_rate":
self._dropout_rate,
"attention_dropout_rate":
self._attention_dropout_rate,
"output_range":
self._output_range,
"use_layer_norm":
self._use_layer_norm,
"share_rezero":
self._share_rezero,
"kernel_initializer":
tf_keras.initializers.serialize(self._kernel_initializer),
"bias_initializer":
tf_keras.initializers.serialize(self._bias_initializer),
"kernel_regularizer":
tf_keras.regularizers.serialize(self._kernel_regularizer),
"bias_regularizer":
tf_keras.regularizers.serialize(self._bias_regularizer),
"activity_regularizer":
tf_keras.regularizers.serialize(self._activity_regularizer),
"kernel_constraint":
tf_keras.constraints.serialize(self._kernel_constraint),
"bias_constraint":
tf_keras.constraints.serialize(self._bias_constraint),
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def reset_rezero(self):
self._rezero_a.assign(0.)
if not self._share_rezero:
self._rezero_a_ffn.assign(0.)
def call(self, inputs, output_range: Optional[tf.Tensor] = None) -> tf.Tensor:
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError("Unexpected inputs to %s with length at %d" %
(self.__class__, len(inputs)))
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
if output_range is None:
output_range = self._output_range
if output_range:
target_tensor = input_tensor[:, 0:output_range, :]
if attention_mask is not None:
attention_mask = attention_mask[:, 0:output_range, :]
else:
target_tensor = input_tensor
if key_value is None:
key_value = input_tensor
attention_output = self._attention_layer(
query=target_tensor, value=key_value, attention_mask=attention_mask)
attention_output = self._attention_dropout(attention_output)
attention_output = target_tensor + self._rezero_a * attention_output
if self._use_layer_norm:
attention_output = self._attention_layer_norm(attention_output)
else:
attention_output = tf.cast(attention_output, tf.float32)
intermediate_output = self._intermediate_dense(attention_output)
intermediate_output = self._inner_activation_layer(intermediate_output)
layer_output = self._output_dense(intermediate_output)
layer_output = self._output_dropout(layer_output)
# During mixed precision training, attention_output is from layer norm and
# is always fp32 for now. Cast layer_output to fp32 for the subsequent add.
layer_output = attention_output + tf.cast(self._rezero_a_ffn * layer_output,
tf.float32)
if self._use_layer_norm:
layer_output = self._output_layer_norm(layer_output)
return layer_output
|