Spaces:
Sleeping
Sleeping
File size: 18,377 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based TransformerEncoder block layer."""
from typing import Any, Optional
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import util
@tf_keras.utils.register_keras_serializable(package="Text")
class TransformerEncoderBlock(tf_keras.layers.Layer):
"""TransformerEncoderBlock layer.
This layer implements the Transformer Encoder from
"Attention Is All You Need". (https://arxiv.org/abs/1706.03762),
which combines a `tf_keras.layers.MultiHeadAttention` layer with a
two-layer feedforward network.
References:
[Attention Is All You Need](https://arxiv.org/abs/1706.03762)
[BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding](https://arxiv.org/abs/1810.04805)
"""
def __init__(self,
num_attention_heads,
inner_dim,
inner_activation,
output_range=None,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
use_bias=True,
norm_first=False,
norm_epsilon=1e-12,
output_dropout=0.0,
attention_dropout=0.0,
inner_dropout=0.0,
attention_initializer=None,
attention_axes=None,
use_query_residual=True,
key_dim=None,
value_dim=None,
output_last_dim=None,
diff_q_kv_att_layer_norm=False,
return_attention_scores=False,
**kwargs):
"""Initializes `TransformerEncoderBlock`.
Note: If `output_last_dim` is used and `use_query_residual` is `True`, the
`output_last_dim`'s value must equal the first input's last dimension for
the query residual connection to work. This is because the residual
connection after the multi-head-attention requires their dimensions to
match. If `use_query_residual` is `False`, the `output_last_dim` dictactes
the last dimension of the output of this module and the
multi-head-attention.
E.g. let's say input dims are `[batch_size, seq_dim, input_last_dim]`.
Scenario 1: If `output_last_dim` is not `None`, then the output dims of this
module would be `[batch_size, seq_dim, output_last_dim]`. Note `key_dim` is
overriden by `output_last_dim`.
Scenario 2: If `output_last_dim` is `None` and `key_dim` is not `None`, then
the output dims of this module would be `[batch_size, seq_dim, key_dim]`.
Scenario 3: If the `output_last_dim` and `key_dim` are both `None`, the
output dims would be `[batch_size, seq_dim, input_last_dim]`.
Args:
num_attention_heads: Number of attention heads.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network.
output_range: the sequence output range, [0, output_range) for slicing the
target sequence. `None` means the target sequence is not sliced.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
use_bias: Whether to enable use_bias in attention layer. If set False,
use_bias in attention layer is disabled.
norm_first: Whether to normalize inputs to attention and intermediate
dense layers. If set False, output of attention and intermediate dense
layers is normalized.
norm_epsilon: Epsilon value to initialize normalization layers.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: Dropout probability for within the attention layer.
inner_dropout: Dropout probability for the first Dense layer in a
two-layer feedforward network.
attention_initializer: Initializer for kernels of attention layers. If set
`None`, attention layers use kernel_initializer as initializer for
kernel.
attention_axes: axes over which the attention is applied. `None` means
attention over all axes, but batch, heads, and features.
use_query_residual: Toggle to execute residual connection after attention.
key_dim: `key_dim` for the `tf_keras.layers.MultiHeadAttention`. If
`None`, we use the first `input_shape`'s last dim.
value_dim: `value_dim` for the `tf_keras.layers.MultiHeadAttention`.
output_last_dim: Final dimension of the output of this module. This also
dictates the value for the final dimension of the multi-head-attention.
When it's `None`, we use, in order of decreasing precedence, `key_dim` *
`num_heads` or the first `input_shape`'s last dim as the output's last
dim.
diff_q_kv_att_layer_norm: If `True`, create a separate attention layer
norm layer for query and key-value if `norm_first` is `True`. Invalid to
set to `True` if `norm_first` is `False`.
return_attention_scores: If `True`, the output of this layer will be a
tuple and additionally contain the attention scores in the shape of
`[batch_size, num_attention_heads, seq_dim, seq_dim]`.
**kwargs: keyword arguments.
"""
util.filter_kwargs(kwargs)
super().__init__(**kwargs)
# Deprecation warning.
if output_range is not None:
logging.warning("`output_range` is available as an argument for `call()`."
"The `output_range` as __init__ argument is deprecated.")
self._num_heads = num_attention_heads
self._inner_dim = inner_dim
self._inner_activation = inner_activation
self._attention_dropout_rate = attention_dropout
self._output_dropout_rate = output_dropout
self._output_range = output_range
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._activity_regularizer = tf_keras.regularizers.get(activity_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
self._use_bias = use_bias
self._norm_first = norm_first
self._norm_epsilon = norm_epsilon
self._inner_dropout = inner_dropout
self._use_query_residual = use_query_residual
self._key_dim = key_dim
self._value_dim = value_dim
self._output_last_dim = output_last_dim
self._diff_q_kv_att_layer_norm = diff_q_kv_att_layer_norm
self._return_attention_scores = return_attention_scores
if attention_initializer:
self._attention_initializer = tf_keras.initializers.get(
attention_initializer)
else:
self._attention_initializer = tf_utils.clone_initializer(
self._kernel_initializer)
self._attention_axes = attention_axes
if self._diff_q_kv_att_layer_norm and not self._norm_first:
raise ValueError("Setting `diff_q_and_kv_attention_layer_norm` to True"
"when `norm_first` is False is invalid.")
def build(self, input_shape):
if isinstance(input_shape, tf.TensorShape):
input_tensor_shape = input_shape
elif isinstance(input_shape, (list, tuple)):
input_tensor_shape = tf.TensorShape(input_shape[0])
else:
raise ValueError(
"The type of input shape argument is not supported, got: %s" %
type(input_shape))
einsum_equation = "abc,cd->abd"
if len(input_tensor_shape.as_list()) > 3:
einsum_equation = "...bc,cd->...bd"
hidden_size = input_tensor_shape[-1]
if hidden_size % self._num_heads != 0:
logging.warning(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)", hidden_size, self._num_heads)
if self._key_dim is None:
self._key_dim = int(hidden_size // self._num_heads)
if self._output_last_dim is None:
last_output_shape = hidden_size
else:
last_output_shape = self._output_last_dim
common_kwargs = dict(
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
self._attention_layer = tf_keras.layers.MultiHeadAttention(
num_heads=self._num_heads,
key_dim=self._key_dim,
value_dim=self._value_dim,
dropout=self._attention_dropout_rate,
use_bias=self._use_bias,
kernel_initializer=self._attention_initializer,
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
attention_axes=self._attention_axes,
output_shape=self._output_last_dim,
name="self_attention",
**common_kwargs)
self._attention_dropout = tf_keras.layers.Dropout(
rate=self._attention_dropout_rate)
# Use float32 in layernorm for numeric stability.
# It is probably safe in mixed_float16, but we haven't validated this yet.
self._attention_layer_norm = (
tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32))
self._attention_layer_norm_kv = self._attention_layer_norm
if self._diff_q_kv_att_layer_norm:
self._attention_layer_norm_kv = (
tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm_kv",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32))
self._intermediate_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=(None, self._inner_dim),
bias_axes="d",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
name="intermediate",
**common_kwargs)
policy = tf_keras.mixed_precision.global_policy()
if policy.name == "mixed_bfloat16":
# bfloat16 causes BERT with the LAMB optimizer to not converge
# as well, so we use float32.
# TODO(b/154538392): Investigate this.
policy = tf.float32
self._intermediate_activation_layer = tf_keras.layers.Activation(
self._inner_activation, dtype=policy)
self._inner_dropout_layer = tf_keras.layers.Dropout(
rate=self._inner_dropout)
self._output_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=(None, last_output_shape),
bias_axes="d",
name="output",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
self._output_dropout = tf_keras.layers.Dropout(
rate=self._output_dropout_rate)
# Use float32 in layernorm for numeric stability.
self._output_layer_norm = tf_keras.layers.LayerNormalization(
name="output_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32)
super().build(input_shape)
def get_config(self):
config = {
"num_attention_heads": self._num_heads,
"inner_dim": self._inner_dim,
"inner_activation": self._inner_activation,
"output_dropout": self._output_dropout_rate,
"attention_dropout": self._attention_dropout_rate,
"output_range": self._output_range,
"kernel_initializer": tf_utils.serialize_initializer(
self._kernel_initializer, use_legacy_format=True
),
"bias_initializer": tf_utils.serialize_initializer(
self._bias_initializer, use_legacy_format=True
),
"kernel_regularizer": tf_utils.serialize_regularizer(
self._kernel_regularizer, use_legacy_format=True
),
"bias_regularizer": tf_utils.serialize_regularizer(
self._bias_regularizer, use_legacy_format=True
),
"activity_regularizer": tf_utils.serialize_regularizer(
self._activity_regularizer, use_legacy_format=True
),
"kernel_constraint": tf_utils.serialize_constraint(
self._kernel_constraint, use_legacy_format=True
),
"bias_constraint": tf_utils.serialize_constraint(
self._bias_constraint, use_legacy_format=True
),
"use_bias": self._use_bias,
"norm_first": self._norm_first,
"norm_epsilon": self._norm_epsilon,
"inner_dropout": self._inner_dropout,
"attention_initializer": tf_utils.serialize_initializer(
self._attention_initializer, use_legacy_format=True
),
"attention_axes": self._attention_axes,
"use_query_residual": self._use_query_residual,
"key_dim": self._key_dim,
"value_dim": self._value_dim,
"output_last_dim": self._output_last_dim,
"diff_q_kv_att_layer_norm": self._diff_q_kv_att_layer_norm,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs: Any, output_range: Optional[tf.Tensor] = None) -> Any:
"""Transformer self-attention encoder block call.
Args:
inputs: a single tensor or a list of tensors. `input tensor` as the single
sequence of embeddings. [`input tensor`, `attention mask`] to have the
additional attention mask. [`query tensor`, `key value tensor`,
`attention mask`] to have separate input streams for the query, and
key/value to the multi-head attention.
output_range: the sequence output range, [0, output_range) for slicing the
target sequence. `None` means the target sequence is not sliced. If you
would like to have no change to the model training, it is better to only
set the `output_range` for serving.
Returns:
An output tensor with the same dimensions as input/query tensor.
"""
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError("Unexpected inputs to %s with length at %d" %
(self.__class__, len(inputs)))
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
if output_range is None:
output_range = self._output_range
if output_range:
if self._norm_first:
source_tensor = input_tensor[:, 0:output_range, :]
input_tensor = self._attention_layer_norm(input_tensor)
if key_value is not None:
key_value = self._attention_layer_norm_kv(key_value)
target_tensor = input_tensor[:, 0:output_range, :]
if attention_mask is not None:
attention_mask = attention_mask[:, 0:output_range, :]
else:
if self._norm_first:
source_tensor = input_tensor
input_tensor = self._attention_layer_norm(input_tensor)
if key_value is not None:
key_value = self._attention_layer_norm_kv(key_value)
target_tensor = input_tensor
if key_value is None:
key_value = input_tensor
if self._return_attention_scores:
attention_output, attention_scores = self._attention_layer(
query=target_tensor,
value=key_value,
attention_mask=attention_mask,
return_attention_scores=True)
else:
attention_output = self._attention_layer(
query=target_tensor, value=key_value, attention_mask=attention_mask)
attention_output = self._attention_dropout(attention_output)
if self._norm_first:
# Important to not combine `self._norm_first` and
# `self._use_query_residual` into one if clause because else is only for
# `_norm_first == False`.
if self._use_query_residual:
attention_output = source_tensor + attention_output
else:
if self._use_query_residual:
attention_output = target_tensor + attention_output
attention_output = self._attention_layer_norm(attention_output)
if self._norm_first:
source_attention_output = attention_output
attention_output = self._output_layer_norm(attention_output)
inner_output = self._intermediate_dense(attention_output)
inner_output = self._intermediate_activation_layer(inner_output)
inner_output = self._inner_dropout_layer(inner_output)
layer_output = self._output_dense(inner_output)
layer_output = self._output_dropout(layer_output)
if self._norm_first:
layer_output = source_attention_output + layer_output
else:
# During mixed precision training, layer norm output is always fp32 for
# now. Casts fp32 for the subsequent add.
layer_output = tf.cast(layer_output, tf.float32)
layer_output = self._output_layer_norm(layer_output + attention_output)
if self._return_attention_scores:
return layer_output, attention_scores
else:
return layer_output
|