Spaces:
Sleeping
Sleeping
File size: 15,704 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based transformer scaffold layer."""
# pylint: disable=g-classes-have-attributes
from absl import logging
import gin
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import attention
from official.nlp.modeling.layers import util
@tf_keras.utils.register_keras_serializable(package="Text")
@gin.configurable
class TransformerScaffold(tf_keras.layers.Layer):
"""Transformer scaffold layer.
This layer implements the Transformer from "Attention Is All You Need".
(https://arxiv.org/abs/1706.03762), with a customizable attention layer and
feedforward layer option. Users can pass a class to
`attention_cls`/`feedforward_cls` and associated config to
`attention_cfg`/`feedforward_cfg`, in which case the scaffold will
instantiate the class with the config, or pass a class instance to
`attention_cls`/`feedforward_cls`.
Args:
num_attention_heads: Number of attention heads.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network.
attention_cls: A class to instantiate attention layer, or a layer instance.
attention_cfg: The config with which to instantiate `attention_cls`. Ignored
if attention_cls is a layer instance or None. If `attention_cls` is a
class, but `attention_cfg` is None, following kwargs will be used to
instantiate the attention instance: {
"num_heads": num_attention_heads,
"key_dim": int(hidden_size // num_attention_heads),
"dropout": attention_dropout_rate,
"name": "self_attention" }, where `hidden_size` is the input tensor's
last dimension.
feedforward_cls: A class to instantiate feedforward layer, or a layer
instance. If None, will use the standard feedforward layer as described in
"Attention Is All You Need" paper. If not None, the instantiated
feedforward layer is expected to take the output of attention as input and
its output is this transformer layer's output.
feedforward_cfg: The config with which to instantiate `feedforward_cls`.
Ignored if feedforward_cls is a layer instance or is None. If
`feedforward_cls` is a class, but `feedforward_cfg` is None, following
kwargs will be used to instantiate the feedforward instance: {
"inner_dim": inner_dim,
"inner_activation": inner_activation,
"dropout": dropout_rate,
"name": "feedforward" }.
dropout_rate: Dropout probability for the post-attention and output dropout.
attention_dropout_rate: Dropout probability for within the attention layer.
norm_first: Whether to normalize inputs to attention and intermediate
dense layers. If set False, output of attention and intermediate dense
layers is normalized.
norm_epsilon: Epsilon value to initialize normalization layers.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
"""
def __init__(self,
num_attention_heads,
inner_dim=768,
inner_activation=tf_utils.get_activation("gelu"),
attention_cls=attention.MultiHeadAttention,
attention_cfg=None,
feedforward_cls=None,
feedforward_cfg=None,
dropout_rate=0.0,
attention_dropout_rate=0.0,
norm_first=False,
norm_epsilon=1e-12,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
inner_dim = kwargs.pop("intermediate_size", inner_dim)
inner_activation = kwargs.pop("inner_activation", inner_activation)
util.filter_kwargs(kwargs)
super().__init__(**kwargs)
self._attention_cfg = attention_cfg
self._attention_cls = attention_cls
self._feedforward_cls = feedforward_cls
self._feedforward_cfg = feedforward_cfg
self._norm_first = norm_first
self._norm_epsilon = norm_epsilon
self._num_heads = num_attention_heads
self._inner_dim = inner_dim
self._inner_activation = inner_activation
self._attention_dropout_rate = attention_dropout_rate
self._dropout_rate = dropout_rate
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
def build(self, input_shape):
if isinstance(input_shape, tf.TensorShape):
input_tensor_shape = input_shape
elif isinstance(input_shape, (list, tuple)):
input_tensor_shape = tf.TensorShape(input_shape[0])
else:
raise ValueError(
"The type of input shape argument is not supported, got: %s" %
type(input_shape))
if len(input_tensor_shape.as_list()) != 3:
raise ValueError(
"TransformerScaffold expects a three-dimensional input of "
"shape [batch, sequence, width].")
hidden_size = input_tensor_shape[-1]
if hidden_size % self._num_heads != 0:
raise ValueError(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, self._num_heads))
self._attention_head_size = int(hidden_size // self._num_heads)
common_kwargs = dict(
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
def get_layer_instance(instance_or_cls, config, default_config):
if isinstance(instance_or_cls, tf_keras.layers.Layer):
return instance_or_cls
elif isinstance(instance_or_cls, dict):
return get_layer_instance(
tf_keras.utils.deserialize_keras_object(instance_or_cls),
config,
default_config,
)
else:
if config is None:
return instance_or_cls(**default_config)
else:
return instance_or_cls(**config)
default_attention_cfg = {
"kernel_initializer": tf_utils.clone_initializer(
self._kernel_initializer),
"bias_initializer": tf_utils.clone_initializer(self._bias_initializer),
"num_heads": self._num_heads,
"key_dim": self._attention_head_size,
"dropout": self._attention_dropout_rate,
"name": "self_attention"
}
default_attention_cfg.update(common_kwargs)
self._attention_layer = get_layer_instance(
self._attention_cls,
config=self._attention_cfg,
default_config=default_attention_cfg)
if self._feedforward_cls is not None:
default_feedforward_cfg = {
"kernel_initializer": tf_utils.clone_initializer(
self._kernel_initializer),
"bias_initializer": tf_utils.clone_initializer(
self._bias_initializer),
"inner_dim": self._inner_dim,
"inner_activation": self._inner_activation,
# TODO(hongkuny): try to update all ffn block args.
"intermediate_size": self._inner_dim,
"intermediate_activation": self._inner_activation,
"dropout": self._dropout_rate,
"name": "feedforward",
}
default_feedforward_cfg.update(common_kwargs)
self._feedforward_block = get_layer_instance(
self._feedforward_cls,
config=self._feedforward_cfg,
default_config=default_feedforward_cfg)
else:
self._feedforward_block = None
# self._dropout_rate controls dropout rates at two places:
# after attention, and after FFN.
self._attention_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
# Use float32 in layernorm for numeric stability.
# It is probably safe in mixed_float16, but we haven't validated this yet.
self._attention_layer_norm = (
tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32))
if self._feedforward_block is None:
self._intermediate_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, self._inner_dim),
bias_axes="d",
name="intermediate",
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
policy = tf_keras.mixed_precision.global_policy()
if policy.name == "mixed_bfloat16":
# bfloat16 causes BERT with the LAMB optimizer to not converge
# as well, so we use float32.
# TODO(b/154538392): Investigate this.
policy = tf.float32
self._intermediate_activation_layer = tf_keras.layers.Activation(
self._inner_activation, dtype=policy)
self._output_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, hidden_size),
bias_axes="d",
name="output",
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
self._output_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
# Use float32 in layernorm for numeric stability.
self._output_layer_norm = tf_keras.layers.LayerNormalization(
name="output_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32)
super().build(input_shape)
logging.info("%s configs: %s", self.__class__.__name__, self.get_config())
def get_config(self):
config = {
"attention_cls": self._attention_layer,
"feedforward_cls": self._feedforward_block,
"num_attention_heads": self._num_heads,
"inner_dim": self._inner_dim,
"inner_activation": self._inner_activation,
"dropout_rate": self._dropout_rate,
"attention_dropout_rate": self._attention_dropout_rate,
"norm_first": self._norm_first,
"norm_epsilon": self._norm_epsilon,
"kernel_initializer": tf_utils.serialize_initializer(
self._kernel_initializer, use_legacy_format=True
),
"bias_initializer": tf_utils.serialize_initializer(
self._bias_initializer, use_legacy_format=True
),
"kernel_regularizer": tf_utils.serialize_regularizer(
self._kernel_regularizer, use_legacy_format=True
),
"bias_regularizer": tf_utils.serialize_regularizer(
self._bias_regularizer, use_legacy_format=True
),
"activity_regularizer": tf_utils.serialize_regularizer(
self._activity_regularizer, use_legacy_format=True
),
"kernel_constraint": tf_utils.serialize_constraint(
self._kernel_constraint, use_legacy_format=True
),
"bias_constraint": tf_utils.serialize_constraint(
self._bias_constraint, use_legacy_format=True
),
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, training=None):
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError("Unexpected inputs to %s with length at %d" %
(self.__class__, len(inputs)))
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
if key_value is None:
key_value = input_tensor
if self._norm_first:
source_tensor = input_tensor
input_tensor = self._attention_layer_norm(input_tensor, training=training)
attention_output = self._attention_layer(
query=input_tensor, value=key_value, attention_mask=attention_mask,
training=training)
attention_output = self._attention_dropout(attention_output,
training=training)
if self._norm_first:
attention_output = source_tensor + attention_output
else:
attention_output = self._attention_layer_norm(input_tensor +
attention_output,
training=training)
if self._norm_first:
source_attention_output = attention_output
attention_output = self._output_layer_norm(attention_output,
training=training)
if self._feedforward_block is None:
intermediate_output = self._intermediate_dense(attention_output)
intermediate_output = self._intermediate_activation_layer(
intermediate_output)
layer_output = self._output_dense(intermediate_output, training=training)
layer_output = self._output_dropout(layer_output, training=training)
# During mixed precision training, attention_output is from layer norm
# and is always fp32 for now. Cast layer_output to fp32 for the subsequent
# add.
layer_output = tf.cast(layer_output, tf.float32)
if self._norm_first:
layer_output = source_attention_output + layer_output
else:
layer_output = self._output_layer_norm(layer_output + attention_output,
training=training)
else:
if self._norm_first:
# if norm_first, assume the feedforward block will not apply layer norm
layer_output = self._feedforward_block(attention_output,
training=training)
layer_output += source_attention_output
else:
# Attention: if not norm_first, assume that the feedforwad does apply
# layer norm. The feedford also apply residual connection. Please
# read the `GatedFeedforward` as a concrete example.
layer_output = self._feedforward_block(attention_output,
training=training)
return layer_output
|