File size: 7,117 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for ALBERT transformer-based text encoder network."""

from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras

from official.nlp.modeling.networks import albert_encoder


class AlbertEncoderTest(tf.test.TestCase, parameterized.TestCase):

  def tearDown(self):
    super(AlbertEncoderTest, self).tearDown()
    tf_keras.mixed_precision.set_global_policy("float32")

  @parameterized.named_parameters(
      dict(testcase_name="default", expected_dtype=tf.float32),
      dict(testcase_name="with_float16_dtype", expected_dtype=tf.float16),
  )
  def test_network_creation(self, expected_dtype):
    hidden_size = 32
    sequence_length = 21

    kwargs = dict(
        vocab_size=100,
        hidden_size=hidden_size,
        num_attention_heads=2,
        num_layers=3)
    if expected_dtype == tf.float16:
      tf_keras.mixed_precision.set_global_policy("mixed_float16")

    # Create a small TransformerEncoder for testing.
    test_network = albert_encoder.AlbertEncoder(**kwargs)

    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
    data, pooled = test_network([word_ids, mask, type_ids])

    expected_data_shape = [None, sequence_length, hidden_size]
    expected_pooled_shape = [None, hidden_size]
    self.assertAllEqual(expected_data_shape, data.shape.as_list())
    self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

    # If float_dtype is set to float16, the data output is float32 (from a layer
    # norm) and pool output should be float16.
    self.assertEqual(tf.float32, data.dtype)
    self.assertEqual(expected_dtype, pooled.dtype)

    # ALBERT has additonal 'embedding_hidden_mapping_in' weights and
    # it shares transformer weights.
    self.assertNotEmpty(
        [x for x in test_network.weights if "embedding_projection/" in x.name])
    self.assertNotEmpty(
        [x for x in test_network.weights if "transformer/" in x.name])
    self.assertEmpty(
        [x for x in test_network.weights if "transformer/layer" in x.name])

  def test_network_invocation(self):
    hidden_size = 32
    sequence_length = 21
    vocab_size = 57
    num_types = 7
    num_layers = 3
    # Create a small TransformerEncoder for testing.
    test_network = albert_encoder.AlbertEncoder(
        vocab_size=vocab_size,
        embedding_width=8,
        hidden_size=hidden_size,
        num_attention_heads=2,
        num_layers=num_layers,
        type_vocab_size=num_types)
    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)
    data, pooled = test_network([word_ids, mask, type_ids])

    # Create a model based off of this network:
    model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled])

    # Invoke the model. We can't validate the output data here (the model is too
    # complex) but this will catch structural runtime errors.
    batch_size = 3
    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(
        num_types, size=(batch_size, sequence_length))
    list_outputs = model.predict([word_id_data, mask_data, type_id_data])

    # Creates a TransformerEncoder with max_sequence_length != sequence_length
    max_sequence_length = 128
    test_network = albert_encoder.AlbertEncoder(
        vocab_size=vocab_size,
        embedding_width=8,
        hidden_size=hidden_size,
        max_sequence_length=max_sequence_length,
        num_attention_heads=2,
        num_layers=num_layers,
        type_vocab_size=num_types)
    model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled])
    _ = model.predict([word_id_data, mask_data, type_id_data])

    # Tests dictionary outputs.
    test_network_dict = albert_encoder.AlbertEncoder(
        vocab_size=vocab_size,
        embedding_width=8,
        hidden_size=hidden_size,
        max_sequence_length=max_sequence_length,
        num_attention_heads=2,
        num_layers=num_layers,
        type_vocab_size=num_types,
        dict_outputs=True)
    _ = test_network_dict([word_ids, mask, type_ids])
    test_network_dict.set_weights(test_network.get_weights())
    list_outputs = test_network([word_id_data, mask_data, type_id_data])
    dict_outputs = test_network_dict(
        dict(
            input_word_ids=word_id_data,
            input_mask=mask_data,
            input_type_ids=type_id_data))
    self.assertAllEqual(list_outputs[0], dict_outputs["sequence_output"])
    self.assertAllEqual(list_outputs[1], dict_outputs["pooled_output"])
    self.assertLen(dict_outputs["pooled_output"], num_layers)

  def test_serialize_deserialize(self):
    tf_keras.mixed_precision.set_global_policy("mixed_float16")
    # Create a network object that sets all of its config options.
    kwargs = dict(
        vocab_size=100,
        embedding_width=8,
        hidden_size=32,
        num_layers=3,
        num_attention_heads=2,
        max_sequence_length=21,
        type_vocab_size=12,
        intermediate_size=1223,
        activation="relu",
        dropout_rate=0.05,
        attention_dropout_rate=0.22,
        initializer="glorot_uniform")
    network = albert_encoder.AlbertEncoder(**kwargs)

    expected_config = dict(kwargs)
    expected_config["activation"] = tf_keras.activations.serialize(
        tf_keras.activations.get(expected_config["activation"]))
    expected_config["initializer"] = tf_keras.initializers.serialize(
        tf_keras.initializers.get(expected_config["initializer"]))
    self.assertEqual(network.get_config(), expected_config)

    # Create another network object from the first object's config.
    new_network = (
        albert_encoder.AlbertEncoder.from_config(
            network.get_config()))

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())


if __name__ == "__main__":
  tf.test.main()