File size: 17,153 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes
import copy
import inspect

from absl import logging
import gin
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling import layers


@tf_keras.utils.register_keras_serializable(package='Text')
@gin.configurable
class EncoderScaffold(tf_keras.Model):
  """Bi-directional Transformer-based encoder network scaffold.

  This network allows users to flexibly implement an encoder similar to the one
  described in "BERT: Pre-training of Deep Bidirectional Transformers for
  Language Understanding" (https://arxiv.org/abs/1810.04805).

  In this network, users can choose to provide a custom embedding subnetwork
  (which will replace the standard embedding logic) and/or a custom hidden layer
  class (which will replace the Transformer instantiation in the encoder). For
  each of these custom injection points, users can pass either a class or a
  class instance. If a class is passed, that class will be instantiated using
  the `embedding_cfg` or `hidden_cfg` argument, respectively; if an instance
  is passed, that instance will be invoked. (In the case of hidden_cls, the
  instance will be invoked 'num_hidden_instances' times.

  If the hidden_cls is not overridden, a default transformer layer will be
  instantiated.

  *Note* that the network is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

  Args:
    pooled_output_dim: The dimension of pooled output.
    pooler_layer_initializer: The initializer for the classification layer.
    embedding_cls: The class or instance to use to embed the input data. This
      class or instance defines the inputs to this encoder and outputs (1)
      embeddings tensor with shape `(batch_size, seq_length, hidden_size)` and
      (2) attention masking with tensor `(batch_size, seq_length, seq_length)`.
      If `embedding_cls` is not set, a default embedding network (from the
      original BERT paper) will be created.
    embedding_cfg: A dict of kwargs to pass to the embedding_cls, if it needs to
      be instantiated. If `embedding_cls` is not set, a config dict must be
      passed to `embedding_cfg` with the following values:
      `vocab_size`: The size of the token vocabulary.
      `type_vocab_size`: The size of the type vocabulary.
      `hidden_size`: The hidden size for this encoder.
      `max_seq_length`: The maximum sequence length for this encoder.
      `seq_length`: The sequence length for this encoder.
      `initializer`: The initializer for the embedding portion of this encoder.
      `dropout_rate`: The dropout rate to apply before the encoding layers.
    embedding_data: A reference to the embedding weights that will be used to
      train the masked language model, if necessary. This is optional, and only
      needed if (1) you are overriding `embedding_cls` and (2) are doing
      standard pretraining.
    num_hidden_instances: The number of times to instantiate and/or invoke the
      hidden_cls.
    hidden_cls: Three types of input are supported: (1) class (2) instance
      (3) list of classes or instances, to encode the input data. If
      `hidden_cls` is not set, a KerasBERT transformer layer will be used as the
      encoder class. If `hidden_cls` is a list of classes or instances, these
      classes (instances) are sequentially instantiated (invoked) on top of
      embedding layer. Mixing classes and instances in the list is allowed.
    hidden_cfg: A dict of kwargs to pass to the hidden_cls, if it needs to be
      instantiated. If hidden_cls is not set, a config dict must be passed to
      `hidden_cfg` with the following values:
        `num_attention_heads`: The number of attention heads. The hidden size
          must be divisible by `num_attention_heads`.
        `intermediate_size`: The intermediate size of the transformer.
        `intermediate_activation`: The activation to apply in the transfomer.
        `dropout_rate`: The overall dropout rate for the transformer layers.
        `attention_dropout_rate`: The dropout rate for the attention layers.
        `kernel_initializer`: The initializer for the transformer layers.
    mask_cls: The class to generate masks passed into hidden_cls() from inputs
      and 2D mask indicating positions we can attend to. It is the caller's job
      to make sure the output of the mask_layer can be used by hidden_layer.
      A mask_cls is usually mapped to a hidden_cls.
    mask_cfg: A dict of kwargs pass to mask_cls.
    layer_norm_before_pooling: Whether to add a layer norm before the pooling
      layer. You probably want to turn this on if you set `norm_first=True` in
      transformer layers.
    return_all_layer_outputs: Whether to output sequence embedding outputs of
      all encoder transformer layers.
    dict_outputs: Whether to use a dictionary as the model outputs.
    layer_idx_as_attention_seed: Whether to include layer_idx in
      attention_cfg in hidden_cfg.
    feed_layer_idx: whether the scaffold should feed layer index to hidden_cls.
    recursive: whether to pass the second return of the hidden layer as the last
      element among the inputs. None will be passed as the initial state.
  """

  def __init__(self,
               pooled_output_dim,
               pooler_layer_initializer=tf_keras.initializers.TruncatedNormal(
                   stddev=0.02),
               embedding_cls=None,
               embedding_cfg=None,
               embedding_data=None,
               num_hidden_instances=1,
               hidden_cls=layers.Transformer,
               hidden_cfg=None,
               mask_cls=layers.SelfAttentionMask,
               mask_cfg=None,
               layer_norm_before_pooling=False,
               return_all_layer_outputs=False,
               dict_outputs=False,
               layer_idx_as_attention_seed=False,
               feed_layer_idx=False,
               recursive=False,
               **kwargs):

    if embedding_cls:
      if inspect.isclass(embedding_cls):
        embedding_network = embedding_cls(
            **embedding_cfg) if embedding_cfg else embedding_cls()
      else:
        embedding_network = embedding_cls
      inputs = embedding_network.inputs
      embeddings, attention_mask = embedding_network(inputs)
      embedding_layer = None
      position_embedding_layer = None
      type_embedding_layer = None
      embedding_norm_layer = None
    else:
      embedding_network = None
      seq_length = embedding_cfg.get('seq_length', None)
      word_ids = tf_keras.layers.Input(
          shape=(seq_length,), dtype=tf.int32, name='input_word_ids')
      mask = tf_keras.layers.Input(
          shape=(seq_length,), dtype=tf.int32, name='input_mask')
      type_ids = tf_keras.layers.Input(
          shape=(seq_length,), dtype=tf.int32, name='input_type_ids')
      inputs = [word_ids, mask, type_ids]

      embedding_layer = layers.OnDeviceEmbedding(
          vocab_size=embedding_cfg['vocab_size'],
          embedding_width=embedding_cfg['hidden_size'],
          initializer=tf_utils.clone_initializer(embedding_cfg['initializer']),
          name='word_embeddings')

      word_embeddings = embedding_layer(word_ids)

      # Always uses dynamic slicing for simplicity.
      position_embedding_layer = layers.PositionEmbedding(
          initializer=tf_utils.clone_initializer(embedding_cfg['initializer']),
          max_length=embedding_cfg['max_seq_length'],
          name='position_embedding')
      position_embeddings = position_embedding_layer(word_embeddings)

      type_embedding_layer = layers.OnDeviceEmbedding(
          vocab_size=embedding_cfg['type_vocab_size'],
          embedding_width=embedding_cfg['hidden_size'],
          initializer=tf_utils.clone_initializer(embedding_cfg['initializer']),
          use_one_hot=True,
          name='type_embeddings')
      type_embeddings = type_embedding_layer(type_ids)

      embeddings = tf_keras.layers.Add()(
          [word_embeddings, position_embeddings, type_embeddings])

      embedding_norm_layer = tf_keras.layers.LayerNormalization(
          name='embeddings/layer_norm',
          axis=-1,
          epsilon=1e-12,
          dtype=tf.float32)
      embeddings = embedding_norm_layer(embeddings)

      embeddings = (
          tf_keras.layers.Dropout(
              rate=embedding_cfg['dropout_rate'])(embeddings))

      mask_cfg = {} if mask_cfg is None else mask_cfg
      if inspect.isclass(mask_cls):
        mask_layer = mask_cls(**mask_cfg)
      else:
        mask_layer = mask_cls
      attention_mask = mask_layer(embeddings, mask)

    data = embeddings

    layer_output_data = []
    hidden_layers = []
    hidden_cfg = hidden_cfg if hidden_cfg else {}

    if isinstance(hidden_cls, list) and len(hidden_cls) != num_hidden_instances:
      raise RuntimeError(
          ('When input hidden_cls to EncoderScaffold %s is a list, it must '
           'contain classes or instances with size specified by '
           'num_hidden_instances, got %d vs %d.') % self.name, len(hidden_cls),
          num_hidden_instances)
    # Consider supporting customized init states.
    recursive_states = None
    for i in range(num_hidden_instances):
      if isinstance(hidden_cls, list):
        cur_hidden_cls = hidden_cls[i]
      else:
        cur_hidden_cls = hidden_cls
      if inspect.isclass(cur_hidden_cls):
        if hidden_cfg and 'attention_cfg' in hidden_cfg and (
            layer_idx_as_attention_seed):
          hidden_cfg = copy.deepcopy(hidden_cfg)
          hidden_cfg['attention_cfg']['seed'] = i
        if feed_layer_idx:
          hidden_cfg['layer_idx'] = i
        layer = cur_hidden_cls(**hidden_cfg)
      else:
        layer = cur_hidden_cls
      if recursive:
        data, recursive_states = layer([data, attention_mask, recursive_states])
      else:
        data = layer([data, attention_mask])
      layer_output_data.append(data)
      hidden_layers.append(layer)

    if layer_norm_before_pooling:
      # Normalize the final output.
      output_layer_norm = tf_keras.layers.LayerNormalization(
          name='final_layer_norm',
          axis=-1,
          epsilon=1e-12)
      layer_output_data[-1] = output_layer_norm(layer_output_data[-1])

    last_layer_output = layer_output_data[-1]
    # Applying a tf.slice op (through subscript notation) to a Keras tensor
    # like this will create a SliceOpLambda layer. This is better than a Lambda
    # layer with Python code, because that is fundamentally less portable.
    first_token_tensor = last_layer_output[:, 0, :]
    pooler_layer_initializer = tf_keras.initializers.get(
        pooler_layer_initializer)
    pooler_layer = tf_keras.layers.Dense(
        units=pooled_output_dim,
        activation='tanh',
        kernel_initializer=pooler_layer_initializer,
        name='cls_transform')
    cls_output = pooler_layer(first_token_tensor)

    if dict_outputs:
      outputs = dict(
          sequence_output=layer_output_data[-1],
          pooled_output=cls_output,
          encoder_outputs=layer_output_data,
      )
    elif return_all_layer_outputs:
      outputs = [layer_output_data, cls_output]
    else:
      outputs = [layer_output_data[-1], cls_output]

    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
    super().__init__(
        inputs=inputs, outputs=outputs, **kwargs)

    self._hidden_cls = hidden_cls
    self._hidden_cfg = hidden_cfg
    self._mask_cls = mask_cls
    self._mask_cfg = mask_cfg
    self._num_hidden_instances = num_hidden_instances
    self._pooled_output_dim = pooled_output_dim
    self._pooler_layer_initializer = pooler_layer_initializer
    self._embedding_cls = embedding_cls
    self._embedding_cfg = embedding_cfg
    self._embedding_data = embedding_data
    self._layer_norm_before_pooling = layer_norm_before_pooling
    self._return_all_layer_outputs = return_all_layer_outputs
    self._dict_outputs = dict_outputs
    self._kwargs = kwargs

    self._embedding_layer = embedding_layer
    self._embedding_network = embedding_network
    self._position_embedding_layer = position_embedding_layer
    self._type_embedding_layer = type_embedding_layer
    self._embedding_norm_layer = embedding_norm_layer
    self._hidden_layers = hidden_layers
    if self._layer_norm_before_pooling:
      self._output_layer_norm = output_layer_norm
    self._pooler_layer = pooler_layer
    self._layer_idx_as_attention_seed = layer_idx_as_attention_seed

    logging.info('EncoderScaffold configs: %s', self.get_config())

  def get_config(self):
    config_dict = {
        'num_hidden_instances': self._num_hidden_instances,
        'pooled_output_dim': self._pooled_output_dim,
        'pooler_layer_initializer': tf_keras.initializers.serialize(
            self._pooler_layer_initializer),
        'embedding_cls': self._embedding_network,
        'embedding_cfg': self._embedding_cfg,
        'layer_norm_before_pooling': self._layer_norm_before_pooling,
        'return_all_layer_outputs': self._return_all_layer_outputs,
        'dict_outputs': self._dict_outputs,
        'layer_idx_as_attention_seed': self._layer_idx_as_attention_seed
    }
    cfgs = {
        'hidden_cfg': self._hidden_cfg,
        'mask_cfg': self._mask_cfg
    }

    for cfg_name, cfg in cfgs.items():
      if cfg:
        config_dict[cfg_name] = {}
        for k, v in cfg.items():
          # `self._hidden_cfg` may contain `class`, e.g., when `hidden_cfg` is
          # `TransformerScaffold`, `attention_cls` argument can be a `class`.
          if inspect.isclass(v):
            config_dict[cfg_name][k] = tf_keras.utils.get_registered_name(v)
          else:
            config_dict[cfg_name][k] = v

    clss = {
        'hidden_cls': self._hidden_cls,
        'mask_cls': self._mask_cls
    }

    for cls_name, cls in clss.items():
      if inspect.isclass(cls):
        key = '{}_string'.format(cls_name)
        config_dict[key] = tf_keras.utils.get_registered_name(cls)
      else:
        config_dict[cls_name] = cls

    config_dict.update(self._kwargs)
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    cls_names = ['hidden_cls', 'mask_cls']
    for cls_name in cls_names:
      cls_string = '{}_string'.format(cls_name)
      if cls_string in config:
        config[cls_name] = tf_keras.utils.get_registered_object(
            config[cls_string], custom_objects=custom_objects)
        del config[cls_string]
    return cls(**config)

  def get_embedding_table(self):
    if self._embedding_network is None:
      # In this case, we don't have a custom embedding network and can return
      # the standard embedding data.
      return self._embedding_layer.embeddings

    if self._embedding_data is None:
      raise RuntimeError(('The EncoderScaffold %s does not have a reference '
                          'to the embedding data. This is required when you '
                          'pass a custom embedding network to the scaffold. '
                          'It is also possible that you are trying to get '
                          'embedding data from an embedding scaffold with a '
                          'custom embedding network where the scaffold has '
                          'been serialized and deserialized. Unfortunately, '
                          'accessing custom embedding references after '
                          'serialization is not yet supported.') % self.name)
    else:
      return self._embedding_data

  @property
  def embedding_network(self):
    if self._embedding_network is None:
      raise RuntimeError(
          ('The EncoderScaffold %s does not have a reference '
           'to the embedding network. This is required when you '
           'pass a custom embedding network to the scaffold.') % self.name)
    return self._embedding_network

  @property
  def hidden_layers(self):
    """List of hidden layers in the encoder."""
    return self._hidden_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer