Spaces:
Sleeping
Sleeping
File size: 12,810 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An embedding network supporting packed sequences and position ids."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling import layers
@tf_keras.utils.register_keras_serializable(package='Text')
class PackedSequenceEmbedding(tf_keras.Model):
"""An embedding network supporting packed sequences and position ids.
This network implements an embedding layer similar to the one described in
"BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding" (https://arxiv.org/abs/1810.04805). On top of it, it supports
to (1) pack multiple sequences into one sequence and (2) allow additional
"position_ids" as input.
Args:
vocab_size: The size of the token vocabulary.
type_vocab_size: The size of the type vocabulary.
embedding_width: Width of token embeddings.
hidden_size: The output size for this encoder.
max_seq_length: The maximum sequence length for this encoder.
initializer: The initializer for the embedding portion of this encoder.
dropout_rate: The dropout rate to apply before the encoding layers.
pack_multiple_sequences: If `True`, we can feed multiple sequences into one
sequence for training and inference (they don't impact each other).
use_position_id: Whether to expect `position_ids` as an input to the
network. If False, the `position_ids` will be inferred: (1) when
pack_multiple_sequences is False, we assume the position ids are `0, 1,
2, ..., seq_length - 1`; (2) when `pack_multiple_sequences` is `True`,
there may be multiple sub sequences, and for each sub sequence, its
position ids start from 0, 1, 2, ...
"""
def __init__(self,
vocab_size,
type_vocab_size,
embedding_width,
hidden_size,
max_seq_length,
initializer,
dropout_rate,
use_position_id=False,
pack_multiple_sequences=False,
**kwargs):
initializer = tf_keras.initializers.get(initializer)
if embedding_width is None:
embedding_width = hidden_size
config_dict = {
'vocab_size': vocab_size,
'type_vocab_size': type_vocab_size,
'embedding_width': embedding_width,
'hidden_size': hidden_size,
'max_seq_length': max_seq_length,
'initializer': tf_keras.initializers.serialize(initializer),
'dropout_rate': dropout_rate,
'use_position_id': use_position_id,
'pack_multiple_sequences': pack_multiple_sequences,
}
word_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_word_ids')
mask = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_mask')
type_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_type_ids')
inputs = [word_ids, mask, type_ids]
if use_position_id:
position_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='position_ids')
inputs.append(position_ids)
else:
position_ids = None
if pack_multiple_sequences:
sub_seq_mask = PackedSequenceMask()(word_ids)
else:
sub_seq_mask = None
embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
name='word_embeddings')
word_embeddings = embedding_layer(word_ids)
# Always uses dynamic slicing for simplicity.
position_embedding_layer = PositionEmbeddingWithSubSeqMask(
initializer=tf_utils.clone_initializer(initializer),
use_dynamic_slicing=True,
max_sequence_length=max_seq_length,
name='position_embedding')
position_embeddings = position_embedding_layer(
word_embeddings, position_ids, sub_seq_mask)
type_embeddings = (
layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
use_one_hot=True,
name='type_embeddings')(type_ids))
embeddings = tf_keras.layers.Add()(
[word_embeddings, position_embeddings, type_embeddings])
embeddings = tf_keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)(
embeddings)
embeddings = tf_keras.layers.Dropout(
rate=dropout_rate, dtype=tf.float32)(
embeddings)
if embedding_width != hidden_size:
embeddings = tf_keras.layers.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes=None,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='embedding_projection')(
embeddings)
attention_mask = layers.SelfAttentionMask()(embeddings, mask)
if sub_seq_mask is not None:
attention_mask = tf_keras.layers.Lambda(
lambda x: x[0] * tf.cast(x[1], x[0].dtype))(
[attention_mask, sub_seq_mask])
outputs = [embeddings, attention_mask]
super().__init__(
inputs=inputs, outputs=outputs, **kwargs)
# TF does not track immutable attrs which do not contain Trackables,
# so by creating a config namedtuple instead of a dict we avoid tracking it.
config_cls = collections.namedtuple('Config', config_dict.keys())
self._config = config_cls(**config_dict)
self._embedding_layer = embedding_layer
self._position_embedding_layer = position_embedding_layer
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_config(self):
return dict(self._config._asdict())
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@tf_keras.utils.register_keras_serializable(package='Text')
class PackedSequenceMask(tf_keras.layers.Layer):
"""A layer to create a mask to indicate multiple sub sequences."""
def call(self, input_ids):
"""Implements call() for the layer.
Args:
input_ids: int32 Tensor of shape [batch_size, seq_length].
Returns:
boolean Tensor of shape [batch_size, seq_length, seq_length]. [x, y, z]
is True if for x'th instance in a batch, y'th token and z'th token are
from the same sub sequence.
"""
# Suppose
# - the first token in the parent sequence is [CLS].
# - every sequence starts from [CLS].
# - every sequence only contains one [CLS].
seq_start_token = input_ids[:, 0:1]
seq_start_loc = tf.cast(tf.equal(input_ids, seq_start_token), tf.int32)
# Set different ids for different sub sequences.
seq_ids = tf.expand_dims(tf.cumsum(seq_start_loc, -1), -1)
return tf.equal(seq_ids, tf.transpose(seq_ids, [0, 2, 1]))
@tf_keras.utils.register_keras_serializable(package='Text')
class PositionEmbeddingWithSubSeqMask(tf_keras.layers.Layer):
"""Creates a positional embedding with sub-sequence masking.
This layer creates a positional embedding as described in "BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding"
(https://arxiv.org/abs/1810.04805). On top of it, it supports
`position_ids` and `sub_sequence_mask` tensors.
This layer can be set up to either create a statically shaped slice or a
dynamically shaped slice. If `use_dynamic_slicing` is True, the input tensor
can have a dynamic 1st dimension, while if `use_dynamic_slicing` is False the
input size must be fixed.
Args:
initializer: The initializer to use for the embedding weights. Defaults to
"glorot_uniform".
use_dynamic_slicing: Whether to use the dynamic slicing path.
max_sequence_length: The maximum size of the dynamic sequence. Only
applicable if `use_dynamic_slicing` is True.
"""
def __init__(self,
initializer='glorot_uniform',
use_dynamic_slicing=False,
max_sequence_length=None,
**kwargs):
# We need to have a default dtype of float32, since the inputs (which Keras
# usually uses to infer the dtype) will always be int32.
if 'dtype' not in kwargs:
kwargs['dtype'] = 'float32'
super().__init__(**kwargs)
if use_dynamic_slicing and max_sequence_length is None:
raise ValueError(
'If `use_dynamic_slicing` is True, `max_sequence_length` must be set.'
)
self._max_sequence_length = max_sequence_length
self._initializer = tf_keras.initializers.get(initializer)
self._use_dynamic_slicing = use_dynamic_slicing
def get_config(self):
config = {
'max_sequence_length': self._max_sequence_length,
'initializer': tf_keras.initializers.serialize(self._initializer),
'use_dynamic_slicing': self._use_dynamic_slicing,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
"""Implements build() for the layer."""
dimension_list = input_shape.as_list()
if len(dimension_list) != 3:
raise ValueError('PositionEmbedding expects a 3-dimensional input tensor '
'of shape [batch, sequence, width]')
seq_length = dimension_list[1]
width = dimension_list[2]
# If we are not using dynamic slicing, we must assume that the sequence
# length is fixed and max_sequence_length should not be specified.
if not self._use_dynamic_slicing:
if seq_length is None:
raise ValueError(
'PositionEmbedding must have `use_dynamic_slicing` set '
'to True (and max_sequence_length set) when the '
'sequence (1st) dimension of the input is None.')
if self._max_sequence_length is not None:
raise ValueError(
'When `use_dynamic_slicing` is False, max_sequence_length should '
'not be specified and we ought to use seq_length to get the '
'variable shape.')
if self._max_sequence_length is not None:
weight_sequence_length = self._max_sequence_length
else:
weight_sequence_length = seq_length
self._position_embeddings = self.add_weight(
'embeddings',
shape=[weight_sequence_length, width],
initializer=self._initializer)
super().build(input_shape)
def call(self, inputs, position_ids=None, sub_sequence_mask=None):
"""Implements call() for the layer.
When `position_ids` is specified, it will return the position embeddings
corresponding to this `position_ids`; otherwise, `position_ids` will be
inferred in the following way:
(1) When `sub_sequence_mask` is None, we assume the position ids are
0, 1, 2, ..., seq_length - 1.
(2) When `sub_sequence_mask` is specified, there may be multiple sub
sequences, and for each sub sequence, its position ids start from
0, 1, 2, ...
Args:
inputs: Word embeddings in shape [batch, seq_length, embedding_dim].
position_ids: An optional int32 tensor in shape [batch, seq_length].
sub_sequence_mask: An optional bool tensor in shape [batch, seq_length,
seq_length]. [x, y, z] is True if for x'th instance in a batch, y'th
token and z'th token are from the same sub sequence.
Returns:
The position embeddings in shape [batch, seq_length, embedding_dim].
"""
input_shape = tf_utils.get_shape_list(inputs, expected_rank=3)
if self._use_dynamic_slicing:
position_embeddings = self._position_embeddings[:input_shape[1], :]
else:
position_embeddings = self._position_embeddings
if position_ids is not None:
return tf.gather(position_embeddings, position_ids)
if sub_sequence_mask is None:
return tf.broadcast_to(position_embeddings, input_shape)
else:
sub_sequence_mask = tf.cast(sub_sequence_mask, tf.int32)
# For each sub sequence, its position ids start from 0, 1, 2, ...
position_ids = tf.linalg.diag_part(tf.cumsum(sub_sequence_mask, -1)) - 1
return tf.gather(position_embeddings, position_ids)
|