File size: 12,810 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""An embedding network supporting packed sequences and position ids."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling import layers


@tf_keras.utils.register_keras_serializable(package='Text')
class PackedSequenceEmbedding(tf_keras.Model):
  """An embedding network supporting packed sequences and position ids.

  This network implements an embedding layer similar to the one described in
  "BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding" (https://arxiv.org/abs/1810.04805). On top of it, it supports
  to (1) pack multiple sequences into one sequence and (2) allow additional
  "position_ids" as input.

  Args:
    vocab_size: The size of the token vocabulary.
    type_vocab_size: The size of the type vocabulary.
    embedding_width: Width of token embeddings.
    hidden_size: The output size for this encoder.
    max_seq_length: The maximum sequence length for this encoder.
    initializer: The initializer for the embedding portion of this encoder.
    dropout_rate: The dropout rate to apply before the encoding layers.
    pack_multiple_sequences: If `True`, we can feed multiple sequences into one
      sequence for training and inference (they don't impact each other).
    use_position_id: Whether to expect `position_ids` as an input to the
      network. If False, the `position_ids` will be inferred: (1) when
        pack_multiple_sequences is False, we assume the position ids are `0, 1,
        2, ..., seq_length - 1`; (2) when `pack_multiple_sequences` is `True`,
        there may be multiple sub sequences, and for each sub sequence, its
        position ids start from 0, 1, 2, ...
  """

  def __init__(self,
               vocab_size,
               type_vocab_size,
               embedding_width,
               hidden_size,
               max_seq_length,
               initializer,
               dropout_rate,
               use_position_id=False,
               pack_multiple_sequences=False,
               **kwargs):
    initializer = tf_keras.initializers.get(initializer)
    if embedding_width is None:
      embedding_width = hidden_size
    config_dict = {
        'vocab_size': vocab_size,
        'type_vocab_size': type_vocab_size,
        'embedding_width': embedding_width,
        'hidden_size': hidden_size,
        'max_seq_length': max_seq_length,
        'initializer': tf_keras.initializers.serialize(initializer),
        'dropout_rate': dropout_rate,
        'use_position_id': use_position_id,
        'pack_multiple_sequences': pack_multiple_sequences,
    }

    word_ids = tf_keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_word_ids')
    mask = tf_keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_mask')
    type_ids = tf_keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_type_ids')
    inputs = [word_ids, mask, type_ids]
    if use_position_id:
      position_ids = tf_keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='position_ids')
      inputs.append(position_ids)
    else:
      position_ids = None

    if pack_multiple_sequences:
      sub_seq_mask = PackedSequenceMask()(word_ids)
    else:
      sub_seq_mask = None

    embedding_layer = layers.OnDeviceEmbedding(
        vocab_size=vocab_size,
        embedding_width=embedding_width,
        initializer=tf_utils.clone_initializer(initializer),
        name='word_embeddings')
    word_embeddings = embedding_layer(word_ids)

    # Always uses dynamic slicing for simplicity.
    position_embedding_layer = PositionEmbeddingWithSubSeqMask(
        initializer=tf_utils.clone_initializer(initializer),
        use_dynamic_slicing=True,
        max_sequence_length=max_seq_length,
        name='position_embedding')
    position_embeddings = position_embedding_layer(
        word_embeddings, position_ids, sub_seq_mask)

    type_embeddings = (
        layers.OnDeviceEmbedding(
            vocab_size=type_vocab_size,
            embedding_width=embedding_width,
            initializer=tf_utils.clone_initializer(initializer),
            use_one_hot=True,
            name='type_embeddings')(type_ids))

    embeddings = tf_keras.layers.Add()(
        [word_embeddings, position_embeddings, type_embeddings])
    embeddings = tf_keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)(
            embeddings)
    embeddings = tf_keras.layers.Dropout(
        rate=dropout_rate, dtype=tf.float32)(
            embeddings)

    if embedding_width != hidden_size:
      embeddings = tf_keras.layers.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes=None,
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='embedding_projection')(
              embeddings)

    attention_mask = layers.SelfAttentionMask()(embeddings, mask)
    if sub_seq_mask is not None:
      attention_mask = tf_keras.layers.Lambda(
          lambda x: x[0] * tf.cast(x[1], x[0].dtype))(
              [attention_mask, sub_seq_mask])

    outputs = [embeddings, attention_mask]
    super().__init__(
        inputs=inputs, outputs=outputs, **kwargs)
    # TF does not track immutable attrs which do not contain Trackables,
    # so by creating a config namedtuple instead of a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)
    self._embedding_layer = embedding_layer
    self._position_embedding_layer = position_embedding_layer

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_config(self):
    return dict(self._config._asdict())

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)


@tf_keras.utils.register_keras_serializable(package='Text')
class PackedSequenceMask(tf_keras.layers.Layer):
  """A layer to create a mask to indicate multiple sub sequences."""

  def call(self, input_ids):
    """Implements call() for the layer.

    Args:
      input_ids: int32 Tensor of shape [batch_size, seq_length].

    Returns:
      boolean Tensor of shape [batch_size, seq_length, seq_length]. [x, y, z]
      is True if for x'th instance in a batch, y'th token and z'th token are
      from the same sub sequence.
    """
    # Suppose
    # - the first token in the parent sequence is [CLS].
    # - every sequence starts from [CLS].
    # - every sequence only contains one [CLS].
    seq_start_token = input_ids[:, 0:1]
    seq_start_loc = tf.cast(tf.equal(input_ids, seq_start_token), tf.int32)
    # Set different ids for different sub sequences.
    seq_ids = tf.expand_dims(tf.cumsum(seq_start_loc, -1), -1)
    return tf.equal(seq_ids, tf.transpose(seq_ids, [0, 2, 1]))


@tf_keras.utils.register_keras_serializable(package='Text')
class PositionEmbeddingWithSubSeqMask(tf_keras.layers.Layer):
  """Creates a positional embedding with sub-sequence masking.

  This layer creates a positional embedding as described in "BERT: Pre-training
  of Deep Bidirectional Transformers for Language Understanding"
  (https://arxiv.org/abs/1810.04805). On top of it, it supports
  `position_ids` and `sub_sequence_mask` tensors.

  This layer can be set up to either create a statically shaped slice or a
  dynamically shaped slice. If `use_dynamic_slicing` is True, the input tensor
  can have a dynamic 1st dimension, while if `use_dynamic_slicing` is False the
  input size must be fixed.

  Args:
    initializer: The initializer to use for the embedding weights. Defaults to
      "glorot_uniform".
    use_dynamic_slicing: Whether to use the dynamic slicing path.
    max_sequence_length: The maximum size of the dynamic sequence. Only
      applicable if `use_dynamic_slicing` is True.
  """

  def __init__(self,
               initializer='glorot_uniform',
               use_dynamic_slicing=False,
               max_sequence_length=None,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    if 'dtype' not in kwargs:
      kwargs['dtype'] = 'float32'

    super().__init__(**kwargs)
    if use_dynamic_slicing and max_sequence_length is None:
      raise ValueError(
          'If `use_dynamic_slicing` is True, `max_sequence_length` must be set.'
      )
    self._max_sequence_length = max_sequence_length
    self._initializer = tf_keras.initializers.get(initializer)
    self._use_dynamic_slicing = use_dynamic_slicing

  def get_config(self):
    config = {
        'max_sequence_length': self._max_sequence_length,
        'initializer': tf_keras.initializers.serialize(self._initializer),
        'use_dynamic_slicing': self._use_dynamic_slicing,
    }
    base_config = super().get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Implements build() for the layer."""
    dimension_list = input_shape.as_list()

    if len(dimension_list) != 3:
      raise ValueError('PositionEmbedding expects a 3-dimensional input tensor '
                       'of shape [batch, sequence, width]')
    seq_length = dimension_list[1]
    width = dimension_list[2]

    # If we are not using dynamic slicing, we must assume that the sequence
    # length is fixed and max_sequence_length should not be specified.
    if not self._use_dynamic_slicing:
      if seq_length is None:
        raise ValueError(
            'PositionEmbedding must have `use_dynamic_slicing` set '
            'to True (and max_sequence_length set) when the '
            'sequence (1st) dimension of the input is None.')
      if self._max_sequence_length is not None:
        raise ValueError(
            'When `use_dynamic_slicing` is False, max_sequence_length should '
            'not be specified and we ought to use seq_length to get the '
            'variable shape.')

    if self._max_sequence_length is not None:
      weight_sequence_length = self._max_sequence_length
    else:
      weight_sequence_length = seq_length

    self._position_embeddings = self.add_weight(
        'embeddings',
        shape=[weight_sequence_length, width],
        initializer=self._initializer)

    super().build(input_shape)

  def call(self, inputs, position_ids=None, sub_sequence_mask=None):
    """Implements call() for the layer.

    When `position_ids` is specified, it will return the position embeddings
    corresponding to this `position_ids`; otherwise, `position_ids` will be
    inferred in the following way:

    (1) When `sub_sequence_mask` is None, we assume the position ids are
        0, 1, 2, ..., seq_length - 1.
    (2) When `sub_sequence_mask` is specified, there may be multiple sub
        sequences, and for each sub sequence, its position ids start from
        0, 1, 2, ...

    Args:
      inputs: Word embeddings in shape [batch, seq_length, embedding_dim].
      position_ids: An optional int32 tensor in shape [batch, seq_length].
      sub_sequence_mask: An optional bool tensor in shape [batch, seq_length,
        seq_length]. [x, y, z] is True if for x'th instance in a batch, y'th
        token and z'th token are from the same sub sequence.

    Returns:
      The position embeddings in shape [batch, seq_length, embedding_dim].
    """
    input_shape = tf_utils.get_shape_list(inputs, expected_rank=3)
    if self._use_dynamic_slicing:
      position_embeddings = self._position_embeddings[:input_shape[1], :]
    else:
      position_embeddings = self._position_embeddings

    if position_ids is not None:
      return tf.gather(position_embeddings, position_ids)

    if sub_sequence_mask is None:
      return tf.broadcast_to(position_embeddings, input_shape)
    else:
      sub_sequence_mask = tf.cast(sub_sequence_mask, tf.int32)
      # For each sub sequence, its position ids start from 0, 1, 2, ...
      position_ids = tf.linalg.diag_part(tf.cumsum(sub_sequence_mask, -1)) - 1
      return tf.gather(position_embeddings, position_ids)