File size: 13,205 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Span labeling network."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras

from official.modeling import tf_utils


def _apply_paragraph_mask(logits, paragraph_mask):
  """Applies a position mask to calculated logits."""
  masked_logits = logits * (paragraph_mask) - 1e30 * (1 - paragraph_mask)
  return tf.nn.log_softmax(masked_logits, -1), masked_logits


@tf_keras.utils.register_keras_serializable(package='Text')
class SpanLabeling(tf_keras.Model):
  """Span labeling network head for BERT modeling.

  This network implements a simple single-span labeler based on a dense layer.
  *Note* that the network is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

  Args:
    input_width: The innermost dimension of the input tensor to this network.
    activation: The activation, if any, for the dense layer in this network.
    initializer: The initializer for the dense layer in this network. Defaults
      to a Glorot uniform initializer.
    output: The output style for this network. Can be either `logits` or
      `predictions`.
  """

  def __init__(self,
               input_width,
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               **kwargs):

    sequence_data = tf_keras.layers.Input(
        shape=(None, input_width), name='sequence_data', dtype=tf.float32)

    intermediate_logits = tf_keras.layers.Dense(
        2,  # This layer predicts start location and end location.
        activation=activation,
        kernel_initializer=initializer,
        name='predictions/transform/logits')(
            sequence_data)
    start_logits, end_logits = self._split_output_tensor(intermediate_logits)

    start_predictions = tf_keras.layers.Activation(tf.nn.log_softmax)(
        start_logits)
    end_predictions = tf_keras.layers.Activation(tf.nn.log_softmax)(end_logits)

    if output == 'logits':
      output_tensors = [start_logits, end_logits]
    elif output == 'predictions':
      output_tensors = [start_predictions, end_predictions]
    else:
      raise ValueError(
          ('Unknown `output` value "%s". `output` can be either "logits" or '
           '"predictions"') % output)

    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
    super().__init__(
        inputs=[sequence_data], outputs=output_tensors, **kwargs)
    config_dict = {
        'input_width': input_width,
        'activation': activation,
        'initializer': initializer,
        'output': output,
    }
    # We are storing the config dict as a namedtuple here to ensure checkpoint
    # compatibility with an earlier version of this model which did not track
    # the config dict attribute. TF does not track immutable attrs which
    # do not contain Trackables, so by creating a config namedtuple instead of
    # a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)
    self.start_logits = start_logits
    self.end_logits = end_logits

  def _split_output_tensor(self, tensor):
    transposed_tensor = tf.transpose(tensor, [2, 0, 1])
    return tf.unstack(transposed_tensor)

  def get_config(self):
    return dict(self._config._asdict())

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)


class XLNetSpanLabeling(tf_keras.layers.Layer):
  """Span labeling network head for XLNet on SQuAD2.0.

  This networks implements a span-labeler based on dense layers and question
  possibility classification. This is the complex version seen in the original
  XLNet implementation.

  This applies a dense layer to the input sequence data to predict the start
  positions, and then uses either the true start positions (if training) or
  beam search to predict the end positions.

  **Note: `compute_with_beam_search` will not work with the Functional API
  (https://www.tensorflow.org/guide/keras/functional).

  Args:
    input_width: The innermost dimension of the input tensor to this network.
    start_n_top: Beam size for span start.
    end_n_top: Beam size for span end.
    activation: The activation, if any, for the dense layer in this network.
    dropout_rate: The dropout rate used for answer classification.
    initializer: The initializer for the dense layer in this network. Defaults
      to a Glorot uniform initializer.
  """

  def __init__(self,
               input_width,
               start_n_top=5,
               end_n_top=5,
               activation='tanh',
               dropout_rate=0.,
               initializer='glorot_uniform',
               **kwargs):
    super().__init__(**kwargs)
    self._config = {
        'input_width': input_width,
        'activation': activation,
        'initializer': initializer,
        'start_n_top': start_n_top,
        'end_n_top': end_n_top,
        'dropout_rate': dropout_rate,
    }
    if start_n_top <= 1:
      raise ValueError('`start_n_top` must be greater than 1.')
    self._start_n_top = start_n_top
    self._end_n_top = end_n_top
    self.start_logits_dense = tf_keras.layers.Dense(
        units=1,
        kernel_initializer=tf_utils.clone_initializer(initializer),
        name='predictions/transform/start_logits')

    self.end_logits_inner_dense = tf_keras.layers.Dense(
        units=input_width,
        kernel_initializer=tf_utils.clone_initializer(initializer),
        activation=activation,
        name='predictions/transform/end_logits/inner')
    self.end_logits_layer_norm = tf_keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12,
        name='predictions/transform/end_logits/layernorm')
    self.end_logits_output_dense = tf_keras.layers.Dense(
        units=1,
        kernel_initializer=tf_utils.clone_initializer(initializer),
        name='predictions/transform/end_logits/output')

    self.answer_logits_inner = tf_keras.layers.Dense(
        units=input_width,
        kernel_initializer=tf_utils.clone_initializer(initializer),
        activation=activation,
        name='predictions/transform/answer_logits/inner')
    self.answer_logits_dropout = tf_keras.layers.Dropout(rate=dropout_rate)
    self.answer_logits_output = tf_keras.layers.Dense(
        units=1,
        kernel_initializer=tf_utils.clone_initializer(initializer),
        use_bias=False,
        name='predictions/transform/answer_logits/output')

  def end_logits(self, inputs):
    """Computes the end logits.

    Input shapes into the inner, layer norm, output layers should match.

    During training, inputs shape should be
    [batch_size, seq_length, input_width].

    During inference, input shapes should be
    [batch_size, seq_length, start_n_top, input_width].

    Args:
      inputs: The input for end logits.

    Returns:
      Calculated end logits.

    """
    if len(tf.shape(inputs)) == 3:
      # inputs: [B, S, H] -> [B, S, 1, H]
      inputs = tf.expand_dims(inputs, axis=2)

    end_logits = self.end_logits_inner_dense(inputs)
    end_logits = self.end_logits_layer_norm(end_logits)
    end_logits = self.end_logits_output_dense(end_logits)
    end_logits = tf.squeeze(end_logits)
    return end_logits

  def call(self,
           sequence_data,
           class_index,
           paragraph_mask=None,
           start_positions=None,
           training=False):
    """Implements call().

    Einsum glossary:
    - b: the batch size.
    - l: the sequence length.
    - h: the hidden size, or input width.
    - k: the start/end top n.

    Args:
      sequence_data: The input sequence data of shape
        `(batch_size, seq_length, input_width)`.
      class_index: The class indices of the inputs of shape `(batch_size,)`.
      paragraph_mask: Invalid position mask such as query and special symbols
        (e.g. PAD, SEP, CLS) of shape `(batch_size,)`.
      start_positions: The start positions of each example of shape
        `(batch_size,)`.
      training: Whether or not this is the training phase.

    Returns:
      A dictionary with the keys `start_predictions`, `end_predictions`,
      `start_logits`, `end_logits`.

      If inference, then `start_top_predictions`, `start_top_index`,
      `end_top_predictions`, `end_top_index` are also included.

    """
    paragraph_mask = tf.cast(paragraph_mask, dtype=sequence_data.dtype)
    class_index = tf.reshape(class_index, [-1])

    seq_length = tf.shape(sequence_data)[1]
    start_logits = self.start_logits_dense(sequence_data)
    start_logits = tf.squeeze(start_logits, -1)
    start_predictions, masked_start_logits = _apply_paragraph_mask(
        start_logits, paragraph_mask)

    compute_with_beam_search = not training or start_positions is None

    if compute_with_beam_search:
      # Compute end logits using beam search.
      start_top_predictions, start_top_index = tf.nn.top_k(
          start_predictions, k=self._start_n_top)
      start_index = tf.one_hot(
          start_top_index, depth=seq_length, axis=-1, dtype=tf.float32)
      # start_index: [batch_size, end_n_top, seq_length]

      start_features = tf.einsum('blh,bkl->bkh', sequence_data, start_index)
      start_features = tf.tile(start_features[:, None, :, :],
                               [1, seq_length, 1, 1])
      # start_features: [batch_size, seq_length, end_n_top, input_width]

      end_input = tf.tile(sequence_data[:, :, None],
                          [1, 1, self._start_n_top, 1])
      end_input = tf.concat([end_input, start_features], axis=-1)
      # end_input: [batch_size, seq_length, end_n_top, 2*input_width]
      paragraph_mask = paragraph_mask[:, None, :]
      end_logits = self.end_logits(end_input)

      # Note: this will fail if start_n_top is not >= 1.
      end_logits = tf.transpose(end_logits, [0, 2, 1])
    else:
      start_positions = tf.reshape(start_positions, [-1])
      start_index = tf.one_hot(
          start_positions, depth=seq_length, axis=-1, dtype=tf.float32)
      # start_index: [batch_size, seq_length]

      start_features = tf.einsum('blh,bl->bh', sequence_data, start_index)
      start_features = tf.tile(start_features[:, None, :], [1, seq_length, 1])
      # start_features: [batch_size, seq_length, input_width]

      end_input = tf.concat([sequence_data, start_features],
                            axis=-1)
      # end_input: [batch_size, seq_length, 2*input_width]
      end_logits = self.end_logits(end_input)
    end_predictions, masked_end_logits = _apply_paragraph_mask(
        end_logits, paragraph_mask)

    output_dict = dict(
        start_predictions=start_predictions,
        end_predictions=end_predictions,
        start_logits=masked_start_logits,
        end_logits=masked_end_logits)

    if not training:
      end_top_predictions, end_top_index = tf.nn.top_k(
          end_predictions, k=self._end_n_top)
      end_top_predictions = tf.reshape(
          end_top_predictions,
          [-1, self._start_n_top * self._end_n_top])
      end_top_index = tf.reshape(
          end_top_index,
          [-1, self._start_n_top * self._end_n_top])
      output_dict['start_top_predictions'] = start_top_predictions
      output_dict['start_top_index'] = start_top_index
      output_dict['end_top_predictions'] = end_top_predictions
      output_dict['end_top_index'] = end_top_index

    # get the representation of CLS
    class_index = tf.one_hot(class_index, seq_length, axis=-1, dtype=tf.float32)
    class_feature = tf.einsum('blh,bl->bh', sequence_data, class_index)

    # get the representation of START
    start_p = tf.nn.softmax(masked_start_logits, axis=-1)
    start_feature = tf.einsum('blh,bl->bh', sequence_data, start_p)

    answer_feature = tf.concat([start_feature, class_feature], -1)
    answer_feature = self.answer_logits_inner(answer_feature)
    answer_feature = self.answer_logits_dropout(answer_feature)
    class_logits = self.answer_logits_output(answer_feature)
    class_logits = tf.squeeze(class_logits, -1)
    output_dict['class_logits'] = class_logits
    return output_dict

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)