Spaces:
Sleeping
Sleeping
File size: 13,205 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Span labeling network."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
def _apply_paragraph_mask(logits, paragraph_mask):
"""Applies a position mask to calculated logits."""
masked_logits = logits * (paragraph_mask) - 1e30 * (1 - paragraph_mask)
return tf.nn.log_softmax(masked_logits, -1), masked_logits
@tf_keras.utils.register_keras_serializable(package='Text')
class SpanLabeling(tf_keras.Model):
"""Span labeling network head for BERT modeling.
This network implements a simple single-span labeler based on a dense layer.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Args:
input_width: The innermost dimension of the input tensor to this network.
activation: The activation, if any, for the dense layer in this network.
initializer: The initializer for the dense layer in this network. Defaults
to a Glorot uniform initializer.
output: The output style for this network. Can be either `logits` or
`predictions`.
"""
def __init__(self,
input_width,
activation=None,
initializer='glorot_uniform',
output='logits',
**kwargs):
sequence_data = tf_keras.layers.Input(
shape=(None, input_width), name='sequence_data', dtype=tf.float32)
intermediate_logits = tf_keras.layers.Dense(
2, # This layer predicts start location and end location.
activation=activation,
kernel_initializer=initializer,
name='predictions/transform/logits')(
sequence_data)
start_logits, end_logits = self._split_output_tensor(intermediate_logits)
start_predictions = tf_keras.layers.Activation(tf.nn.log_softmax)(
start_logits)
end_predictions = tf_keras.layers.Activation(tf.nn.log_softmax)(end_logits)
if output == 'logits':
output_tensors = [start_logits, end_logits]
elif output == 'predictions':
output_tensors = [start_predictions, end_predictions]
else:
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
# b/164516224
# Once we've created the network using the Functional API, we call
# super().__init__ as though we were invoking the Functional API Model
# constructor, resulting in this object having all the properties of a model
# created using the Functional API. Once super().__init__ is called, we
# can assign attributes to `self` - note that all `self` assignments are
# below this line.
super().__init__(
inputs=[sequence_data], outputs=output_tensors, **kwargs)
config_dict = {
'input_width': input_width,
'activation': activation,
'initializer': initializer,
'output': output,
}
# We are storing the config dict as a namedtuple here to ensure checkpoint
# compatibility with an earlier version of this model which did not track
# the config dict attribute. TF does not track immutable attrs which
# do not contain Trackables, so by creating a config namedtuple instead of
# a dict we avoid tracking it.
config_cls = collections.namedtuple('Config', config_dict.keys())
self._config = config_cls(**config_dict)
self.start_logits = start_logits
self.end_logits = end_logits
def _split_output_tensor(self, tensor):
transposed_tensor = tf.transpose(tensor, [2, 0, 1])
return tf.unstack(transposed_tensor)
def get_config(self):
return dict(self._config._asdict())
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
class XLNetSpanLabeling(tf_keras.layers.Layer):
"""Span labeling network head for XLNet on SQuAD2.0.
This networks implements a span-labeler based on dense layers and question
possibility classification. This is the complex version seen in the original
XLNet implementation.
This applies a dense layer to the input sequence data to predict the start
positions, and then uses either the true start positions (if training) or
beam search to predict the end positions.
**Note: `compute_with_beam_search` will not work with the Functional API
(https://www.tensorflow.org/guide/keras/functional).
Args:
input_width: The innermost dimension of the input tensor to this network.
start_n_top: Beam size for span start.
end_n_top: Beam size for span end.
activation: The activation, if any, for the dense layer in this network.
dropout_rate: The dropout rate used for answer classification.
initializer: The initializer for the dense layer in this network. Defaults
to a Glorot uniform initializer.
"""
def __init__(self,
input_width,
start_n_top=5,
end_n_top=5,
activation='tanh',
dropout_rate=0.,
initializer='glorot_uniform',
**kwargs):
super().__init__(**kwargs)
self._config = {
'input_width': input_width,
'activation': activation,
'initializer': initializer,
'start_n_top': start_n_top,
'end_n_top': end_n_top,
'dropout_rate': dropout_rate,
}
if start_n_top <= 1:
raise ValueError('`start_n_top` must be greater than 1.')
self._start_n_top = start_n_top
self._end_n_top = end_n_top
self.start_logits_dense = tf_keras.layers.Dense(
units=1,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='predictions/transform/start_logits')
self.end_logits_inner_dense = tf_keras.layers.Dense(
units=input_width,
kernel_initializer=tf_utils.clone_initializer(initializer),
activation=activation,
name='predictions/transform/end_logits/inner')
self.end_logits_layer_norm = tf_keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12,
name='predictions/transform/end_logits/layernorm')
self.end_logits_output_dense = tf_keras.layers.Dense(
units=1,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='predictions/transform/end_logits/output')
self.answer_logits_inner = tf_keras.layers.Dense(
units=input_width,
kernel_initializer=tf_utils.clone_initializer(initializer),
activation=activation,
name='predictions/transform/answer_logits/inner')
self.answer_logits_dropout = tf_keras.layers.Dropout(rate=dropout_rate)
self.answer_logits_output = tf_keras.layers.Dense(
units=1,
kernel_initializer=tf_utils.clone_initializer(initializer),
use_bias=False,
name='predictions/transform/answer_logits/output')
def end_logits(self, inputs):
"""Computes the end logits.
Input shapes into the inner, layer norm, output layers should match.
During training, inputs shape should be
[batch_size, seq_length, input_width].
During inference, input shapes should be
[batch_size, seq_length, start_n_top, input_width].
Args:
inputs: The input for end logits.
Returns:
Calculated end logits.
"""
if len(tf.shape(inputs)) == 3:
# inputs: [B, S, H] -> [B, S, 1, H]
inputs = tf.expand_dims(inputs, axis=2)
end_logits = self.end_logits_inner_dense(inputs)
end_logits = self.end_logits_layer_norm(end_logits)
end_logits = self.end_logits_output_dense(end_logits)
end_logits = tf.squeeze(end_logits)
return end_logits
def call(self,
sequence_data,
class_index,
paragraph_mask=None,
start_positions=None,
training=False):
"""Implements call().
Einsum glossary:
- b: the batch size.
- l: the sequence length.
- h: the hidden size, or input width.
- k: the start/end top n.
Args:
sequence_data: The input sequence data of shape
`(batch_size, seq_length, input_width)`.
class_index: The class indices of the inputs of shape `(batch_size,)`.
paragraph_mask: Invalid position mask such as query and special symbols
(e.g. PAD, SEP, CLS) of shape `(batch_size,)`.
start_positions: The start positions of each example of shape
`(batch_size,)`.
training: Whether or not this is the training phase.
Returns:
A dictionary with the keys `start_predictions`, `end_predictions`,
`start_logits`, `end_logits`.
If inference, then `start_top_predictions`, `start_top_index`,
`end_top_predictions`, `end_top_index` are also included.
"""
paragraph_mask = tf.cast(paragraph_mask, dtype=sequence_data.dtype)
class_index = tf.reshape(class_index, [-1])
seq_length = tf.shape(sequence_data)[1]
start_logits = self.start_logits_dense(sequence_data)
start_logits = tf.squeeze(start_logits, -1)
start_predictions, masked_start_logits = _apply_paragraph_mask(
start_logits, paragraph_mask)
compute_with_beam_search = not training or start_positions is None
if compute_with_beam_search:
# Compute end logits using beam search.
start_top_predictions, start_top_index = tf.nn.top_k(
start_predictions, k=self._start_n_top)
start_index = tf.one_hot(
start_top_index, depth=seq_length, axis=-1, dtype=tf.float32)
# start_index: [batch_size, end_n_top, seq_length]
start_features = tf.einsum('blh,bkl->bkh', sequence_data, start_index)
start_features = tf.tile(start_features[:, None, :, :],
[1, seq_length, 1, 1])
# start_features: [batch_size, seq_length, end_n_top, input_width]
end_input = tf.tile(sequence_data[:, :, None],
[1, 1, self._start_n_top, 1])
end_input = tf.concat([end_input, start_features], axis=-1)
# end_input: [batch_size, seq_length, end_n_top, 2*input_width]
paragraph_mask = paragraph_mask[:, None, :]
end_logits = self.end_logits(end_input)
# Note: this will fail if start_n_top is not >= 1.
end_logits = tf.transpose(end_logits, [0, 2, 1])
else:
start_positions = tf.reshape(start_positions, [-1])
start_index = tf.one_hot(
start_positions, depth=seq_length, axis=-1, dtype=tf.float32)
# start_index: [batch_size, seq_length]
start_features = tf.einsum('blh,bl->bh', sequence_data, start_index)
start_features = tf.tile(start_features[:, None, :], [1, seq_length, 1])
# start_features: [batch_size, seq_length, input_width]
end_input = tf.concat([sequence_data, start_features],
axis=-1)
# end_input: [batch_size, seq_length, 2*input_width]
end_logits = self.end_logits(end_input)
end_predictions, masked_end_logits = _apply_paragraph_mask(
end_logits, paragraph_mask)
output_dict = dict(
start_predictions=start_predictions,
end_predictions=end_predictions,
start_logits=masked_start_logits,
end_logits=masked_end_logits)
if not training:
end_top_predictions, end_top_index = tf.nn.top_k(
end_predictions, k=self._end_n_top)
end_top_predictions = tf.reshape(
end_top_predictions,
[-1, self._start_n_top * self._end_n_top])
end_top_index = tf.reshape(
end_top_index,
[-1, self._start_n_top * self._end_n_top])
output_dict['start_top_predictions'] = start_top_predictions
output_dict['start_top_index'] = start_top_index
output_dict['end_top_predictions'] = end_top_predictions
output_dict['end_top_index'] = end_top_index
# get the representation of CLS
class_index = tf.one_hot(class_index, seq_length, axis=-1, dtype=tf.float32)
class_feature = tf.einsum('blh,bl->bh', sequence_data, class_index)
# get the representation of START
start_p = tf.nn.softmax(masked_start_logits, axis=-1)
start_feature = tf.einsum('blh,bl->bh', sequence_data, start_p)
answer_feature = tf.concat([start_feature, class_feature], -1)
answer_feature = self.answer_logits_inner(answer_feature)
answer_feature = self.answer_logits_dropout(answer_feature)
class_logits = self.answer_logits_output(answer_feature)
class_logits = tf.squeeze(class_logits, -1)
output_dict['class_logits'] = class_logits
return output_dict
def get_config(self):
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
|