File size: 11,984 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for span_labeling network."""
import numpy as np
import tensorflow as tf, tf_keras

from official.nlp.modeling.networks import span_labeling


class SpanLabelingTest(tf.test.TestCase):

  def test_network_creation(self):
    """Validate that the Keras object can be created."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(
        input_width=input_width, output='predictions')
    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf_keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    start_outputs, end_outputs = test_network(sequence_data)

    # Validate that the outputs are of the expected shape.
    expected_output_shape = [None, sequence_length]
    self.assertEqual(expected_output_shape, start_outputs.shape.as_list())
    self.assertEqual(expected_output_shape, end_outputs.shape.as_list())

  def test_network_invocation(self):
    """Validate that the Keras object can be invoked."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(input_width=input_width)

    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf_keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    outputs = test_network(sequence_data)
    model = tf_keras.Model(sequence_data, outputs)

    # Invoke the network as part of a Model.
    batch_size = 3
    input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, input_width))
    start_outputs, end_outputs = model.predict(input_data)

    # Validate that the outputs are of the expected shape.
    expected_output_shape = (batch_size, sequence_length)
    self.assertEqual(expected_output_shape, start_outputs.shape)
    self.assertEqual(expected_output_shape, end_outputs.shape)

  def test_network_invocation_with_internal_logit_output(self):
    """Validate that the logit outputs are correct."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(
        input_width=input_width, output='predictions')
    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf_keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    output = test_network(sequence_data)
    model = tf_keras.Model(sequence_data, output)
    logit_model = tf_keras.Model(
        test_network.inputs,
        [test_network.start_logits, test_network.end_logits])

    batch_size = 3
    input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, input_width))
    start_outputs, end_outputs = model.predict(input_data)
    start_logits, end_logits = logit_model.predict(input_data)

    # Ensure that the tensor shapes are correct.
    expected_output_shape = (batch_size, sequence_length)
    self.assertEqual(expected_output_shape, start_outputs.shape)
    self.assertEqual(expected_output_shape, end_outputs.shape)
    self.assertEqual(expected_output_shape, start_logits.shape)
    self.assertEqual(expected_output_shape, end_logits.shape)

    # Ensure that the logits, when softmaxed, create the outputs.
    input_tensor = tf_keras.Input(expected_output_shape[1:])
    output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
    softmax_model = tf_keras.Model(input_tensor, output_tensor)

    start_softmax = softmax_model.predict(start_logits)
    self.assertAllClose(start_outputs, start_softmax)
    end_softmax = softmax_model.predict(end_logits)
    self.assertAllClose(end_outputs, end_softmax)

  def test_network_invocation_with_external_logit_output(self):
    """Validate that the logit outputs are correct."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(
        input_width=input_width, output='predictions')
    logit_network = span_labeling.SpanLabeling(
        input_width=input_width, output='logits')
    logit_network.set_weights(test_network.get_weights())

    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf_keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    output = test_network(sequence_data)
    logit_output = logit_network(sequence_data)
    model = tf_keras.Model(sequence_data, output)
    logit_model = tf_keras.Model(sequence_data, logit_output)

    batch_size = 3
    input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, input_width))
    start_outputs, end_outputs = model.predict(input_data)
    start_logits, end_logits = logit_model.predict(input_data)

    # Ensure that the tensor shapes are correct.
    expected_output_shape = (batch_size, sequence_length)
    self.assertEqual(expected_output_shape, start_outputs.shape)
    self.assertEqual(expected_output_shape, end_outputs.shape)
    self.assertEqual(expected_output_shape, start_logits.shape)
    self.assertEqual(expected_output_shape, end_logits.shape)

    # Ensure that the logits, when softmaxed, create the outputs.
    input_tensor = tf_keras.Input(expected_output_shape[1:])
    output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
    softmax_model = tf_keras.Model(input_tensor, output_tensor)

    start_softmax = softmax_model.predict(start_logits)
    self.assertAllClose(start_outputs, start_softmax)
    end_softmax = softmax_model.predict(end_logits)
    self.assertAllClose(end_outputs, end_softmax)

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    network = span_labeling.SpanLabeling(
        input_width=128,
        activation='relu',
        initializer='zeros',
        output='predictions')

    # Create another network object from the first object's config.
    new_network = span_labeling.SpanLabeling.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())

  def test_unknown_output_type_fails(self):
    with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
      _ = span_labeling.SpanLabeling(input_width=10, output='bad')


class XLNetSpanLabelingTest(tf.test.TestCase):

  def test_basic_invocation_train(self):
    batch_size = 2
    seq_length = 8
    hidden_size = 4
    sequence_data = np.random.uniform(
        size=(batch_size, seq_length, hidden_size)).astype('float32')
    paragraph_mask = np.random.uniform(
        size=(batch_size, seq_length)).astype('float32')
    class_index = np.random.uniform(size=(batch_size)).astype('uint8')
    start_positions = np.zeros(shape=(batch_size)).astype('uint8')

    layer = span_labeling.XLNetSpanLabeling(
        input_width=hidden_size,
        start_n_top=2,
        end_n_top=2,
        activation='tanh',
        dropout_rate=0.,
        initializer='glorot_uniform')
    output = layer(sequence_data=sequence_data,
                   class_index=class_index,
                   paragraph_mask=paragraph_mask,
                   start_positions=start_positions,
                   training=True)

    expected_keys = {
        'start_logits', 'end_logits', 'class_logits', 'start_predictions',
        'end_predictions',
    }
    self.assertSetEqual(expected_keys, set(output.keys()))

  def test_basic_invocation_beam_search(self):
    batch_size = 2
    seq_length = 8
    hidden_size = 4
    top_n = 5
    sequence_data = np.random.uniform(
        size=(batch_size, seq_length, hidden_size)).astype('float32')
    paragraph_mask = np.random.uniform(
        size=(batch_size, seq_length)).astype('float32')
    class_index = np.random.uniform(size=(batch_size)).astype('uint8')

    layer = span_labeling.XLNetSpanLabeling(
        input_width=hidden_size,
        start_n_top=top_n,
        end_n_top=top_n,
        activation='tanh',
        dropout_rate=0.,
        initializer='glorot_uniform')
    output = layer(sequence_data=sequence_data,
                   class_index=class_index,
                   paragraph_mask=paragraph_mask,
                   training=False)
    expected_keys = {
        'start_top_predictions', 'end_top_predictions', 'class_logits',
        'start_top_index', 'end_top_index', 'start_logits',
        'end_logits', 'start_predictions', 'end_predictions'
    }
    self.assertSetEqual(expected_keys, set(output.keys()))

  def test_subclass_invocation(self):
    """Tests basic invocation of this layer wrapped in a subclass."""
    seq_length = 8
    hidden_size = 4
    batch_size = 2

    sequence_data = tf_keras.Input(shape=(seq_length, hidden_size),
                                   dtype=tf.float32)
    class_index = tf_keras.Input(shape=(), dtype=tf.uint8)
    paragraph_mask = tf_keras.Input(shape=(seq_length), dtype=tf.float32)
    start_positions = tf_keras.Input(shape=(), dtype=tf.int32)

    layer = span_labeling.XLNetSpanLabeling(
        input_width=hidden_size,
        start_n_top=5,
        end_n_top=5,
        activation='tanh',
        dropout_rate=0.,
        initializer='glorot_uniform')

    output = layer(sequence_data=sequence_data,
                   class_index=class_index,
                   paragraph_mask=paragraph_mask,
                   start_positions=start_positions)
    model = tf_keras.Model(
        inputs={
            'sequence_data': sequence_data,
            'class_index': class_index,
            'paragraph_mask': paragraph_mask,
            'start_positions': start_positions,
        },
        outputs=output)

    sequence_data = tf.random.uniform(
        shape=(batch_size, seq_length, hidden_size), dtype=tf.float32)
    paragraph_mask = tf.random.uniform(
        shape=(batch_size, seq_length), dtype=tf.float32)
    class_index = tf.ones(shape=(batch_size,), dtype=tf.uint8)
    start_positions = tf.random.uniform(
        shape=(batch_size,), maxval=5, dtype=tf.int32)

    inputs = dict(sequence_data=sequence_data,
                  paragraph_mask=paragraph_mask,
                  class_index=class_index,
                  start_positions=start_positions)

    output = model(inputs)
    self.assertIsInstance(output, dict)

    # Test `call` without training flag.
    output = model(inputs, training=False)
    self.assertIsInstance(output, dict)

    # Test `call` with training flag.
    # Note: this fails due to incompatibility with the functional API.
    with self.assertRaisesRegex(AssertionError,
                                'Could not compute output KerasTensor'):
      model(inputs, training=True)

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    network = span_labeling.XLNetSpanLabeling(
        input_width=128,
        start_n_top=5,
        end_n_top=1,
        activation='tanh',
        dropout_rate=0.34,
        initializer='zeros')

    # Create another network object from the first object's config.
    new_network = span_labeling.XLNetSpanLabeling.from_config(
        network.get_config())

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())


if __name__ == '__main__':
  tf.test.main()