Spaces:
Sleeping
Sleeping
File size: 14,788 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Keras based XLNet model."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from tensorflow.python.distribute import combinations
from official.nlp.modeling.networks import xlnet_base
class RelativePositionEncodingTest(tf.test.TestCase):
def test_positional_embedding(self):
"""A low-dimensional example is tested.
With len(pos_seq)=2 and d_model=4:
pos_seq = [[1.], [0.]]
inv_freq = [1., 0.01]
pos_seq x inv_freq = [[1, 0.01], [0., 0.]]
pos_emb = [[sin(1.), sin(0.01), cos(1.), cos(0.01)],
[sin(0.), sin(0.), cos(0.), cos(0.)]]
= [[0.84147096, 0.00999983, 0.54030228, 0.99994999],
[0., 0., 1., 1.]]
"""
target = np.array([[[0.84147096, 0.00999983, 0.54030228, 0.99994999],
[0., 0., 1., 1.]]])
hidden_size = 4
pos_seq = tf.range(1, -1, -1.0) # [1., 0.]
encoding_layer = xlnet_base.RelativePositionEncoding(
hidden_size=hidden_size)
encoding = encoding_layer(pos_seq, batch_size=None).numpy().astype(float)
self.assertAllClose(encoding, target)
class ComputePositionEncodingTest(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(combinations.combine(
attention_type=["uni", "bi"],
bi_data=[False, True],
))
def test_compute_position_encoding_smoke(self, attention_type, bi_data):
hidden_size = 4
batch_size = 4
total_length = 8
seq_length = 4
position_encoding_layer = xlnet_base.RelativePositionEncoding(
hidden_size=hidden_size)
encoding = xlnet_base._compute_positional_encoding(
attention_type=attention_type,
position_encoding_layer=position_encoding_layer,
hidden_size=hidden_size,
batch_size=batch_size,
total_length=total_length,
seq_length=seq_length,
clamp_length=2,
bi_data=bi_data,
dtype=tf.float32)
self.assertEqual(encoding.shape[0], batch_size)
self.assertEqual(encoding.shape[2], hidden_size)
class CausalAttentionMaskTests(tf.test.TestCase):
def test_casual_attention_mask_with_no_memory(self):
seq_length, memory_length = 3, 0
causal_attention_mask = xlnet_base._create_causal_attention_mask(
seq_length=seq_length,
memory_length=memory_length)
expected_output = np.array([[1, 0, 0],
[1, 1, 0],
[1, 1, 1]])
self.assertAllClose(causal_attention_mask, expected_output)
def test_casual_attention_mask_with_memory(self):
seq_length, memory_length = 3, 2
causal_attention_mask = xlnet_base._create_causal_attention_mask(
seq_length=seq_length,
memory_length=memory_length)
expected_output = np.array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])
self.assertAllClose(causal_attention_mask, expected_output)
def test_causal_attention_mask_with_same_length(self):
seq_length, memory_length = 3, 2
causal_attention_mask = xlnet_base._create_causal_attention_mask(
seq_length=seq_length,
memory_length=memory_length,
same_length=True)
expected_output = np.array([[1, 1, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 1, 1]])
self.assertAllClose(causal_attention_mask, expected_output)
class MaskComputationTests(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(combinations.combine(
use_input_mask=[False, True],
use_permutation_mask=[False, True],
attention_type=["uni", "bi"],
memory_length=[0, 4],
))
def test_compute_attention_mask_smoke(self,
use_input_mask,
use_permutation_mask,
attention_type,
memory_length):
"""Tests coverage and functionality for different configurations."""
batch_size = 2
seq_length = 8
if use_input_mask:
input_mask = tf.zeros(shape=(batch_size, seq_length))
else:
input_mask = None
if use_permutation_mask:
permutation_mask = tf.zeros(shape=(batch_size, seq_length, seq_length))
else:
permutation_mask = None
_, content_mask = xlnet_base._compute_attention_mask(
input_mask=input_mask,
permutation_mask=permutation_mask,
attention_type=attention_type,
seq_length=seq_length,
memory_length=memory_length,
batch_size=batch_size,
dtype=tf.float32)
expected_mask_shape = (batch_size, 1,
seq_length, seq_length + memory_length)
if use_input_mask or use_permutation_mask:
self.assertEqual(content_mask.shape, expected_mask_shape)
def test_no_input_masks(self):
query_mask, content_mask = xlnet_base._compute_attention_mask(
input_mask=None,
permutation_mask=None,
attention_type="uni",
seq_length=8,
memory_length=2,
batch_size=2,
dtype=tf.float32)
self.assertIsNone(query_mask)
self.assertIsNone(content_mask)
def test_input_mask_no_permutation(self):
"""Tests if an input mask is provided but not permutation.
In the case that only one of input mask or permutation mask is provided
and the attention type is bidirectional, the query mask should be
a broadcasted version of the provided mask.
Content mask should be a broadcasted version of the query mask, where the
diagonal is 0s.
"""
seq_length = 4
batch_size = 1
memory_length = 0
input_mask = np.array([[1, 1, 0, 0]])
permutation_mask = None
expected_query_mask = input_mask[None, None, :, :]
expected_content_mask = np.array([[[
[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 0, 1]]]])
query_mask, content_mask = xlnet_base._compute_attention_mask(
input_mask=input_mask,
permutation_mask=permutation_mask,
attention_type="bi",
seq_length=seq_length,
memory_length=memory_length,
batch_size=batch_size,
dtype=tf.float32)
self.assertAllClose(query_mask, expected_query_mask)
self.assertAllClose(content_mask, expected_content_mask)
def test_permutation_mask_no_input_mask(self):
"""Tests if a permutation mask is provided but not input."""
seq_length = 2
batch_size = 1
memory_length = 0
input_mask = None
permutation_mask = np.array([
[[1, 0],
[1, 0]],
])
expected_query_mask = permutation_mask[:, None, :, :]
expected_content_mask = np.array([[[
[1, 0],
[1, 1]]]])
query_mask, content_mask = xlnet_base._compute_attention_mask(
input_mask=input_mask,
permutation_mask=permutation_mask,
attention_type="bi",
seq_length=seq_length,
memory_length=memory_length,
batch_size=batch_size,
dtype=tf.float32)
self.assertAllClose(query_mask, expected_query_mask)
self.assertAllClose(content_mask, expected_content_mask)
def test_permutation_and_input_mask(self):
"""Tests if both an input and permutation mask are provided."""
seq_length = 4
batch_size = 1
memory_length = 0
input_mask = np.array([[1, 1, 0, 0]])
permutation_mask = np.array([[
[0, 1, 1, 1],
[1, 0, 1, 1],
[1, 1, 0, 1],
[1, 1, 1, 0],
]])
expected_query_mask = np.array([[[
[0, 1, 0, 0],
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 0, 0]]]])
expected_content_mask = np.array([[[
[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 0, 1]]]])
query_mask, content_mask = xlnet_base._compute_attention_mask(
input_mask=input_mask,
permutation_mask=permutation_mask,
attention_type="bi",
seq_length=seq_length,
memory_length=memory_length,
batch_size=batch_size,
dtype=tf.float32)
self.assertAllClose(query_mask, expected_query_mask)
self.assertAllClose(content_mask, expected_content_mask)
def test_permutation_input_uni_mask(self):
"""Tests if an input, permutation and causal mask are provided."""
seq_length = 4
batch_size = 1
memory_length = 0
input_mask = np.array([[1, 1, 1, 0]])
permutation_mask = np.array([[
[0, 1, 1, 1],
[1, 0, 1, 1],
[1, 1, 0, 1],
[1, 1, 1, 0],
]])
expected_query_mask = np.array([[[
[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0]]]])
expected_content_mask = np.array([[[
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1]]]])
query_mask, content_mask = xlnet_base._compute_attention_mask(
input_mask=input_mask,
permutation_mask=permutation_mask,
attention_type="uni",
seq_length=seq_length,
memory_length=memory_length,
batch_size=batch_size,
dtype=tf.float32)
self.assertAllClose(query_mask, expected_query_mask)
self.assertAllClose(content_mask, expected_content_mask)
class SegmentMatrixTests(tf.test.TestCase):
def test_no_segment_ids(self):
segment_matrix = xlnet_base._compute_segment_matrix(
segment_ids=None,
memory_length=2,
batch_size=1,
use_cls_mask=False)
self.assertIsNone(segment_matrix)
def test_basic(self):
batch_size = 1
memory_length = 0
segment_ids = np.array([
[1, 1, 2, 1]
])
expected_segment_matrix = np.array([[
[False, False, True, False],
[False, False, True, False],
[True, True, False, True],
[False, False, True, False]
]])
segment_matrix = xlnet_base._compute_segment_matrix(
segment_ids=segment_ids,
memory_length=memory_length,
batch_size=batch_size,
use_cls_mask=False)
self.assertAllClose(segment_matrix, expected_segment_matrix)
def test_basic_with_memory(self):
batch_size = 1
memory_length = 1
segment_ids = np.array([
[1, 1, 2, 1]
])
expected_segment_matrix = np.array([[
[True, False, False, True, False],
[True, False, False, True, False],
[True, True, True, False, True],
[True, False, False, True, False]
]]).astype(int)
segment_matrix = tf.cast(xlnet_base._compute_segment_matrix(
segment_ids=segment_ids,
memory_length=memory_length,
batch_size=batch_size,
use_cls_mask=False), dtype=tf.uint8)
self.assertAllClose(segment_matrix, expected_segment_matrix)
def dont_test_basic_with_class_mask(self):
# TODO(allencwang) - this test should pass but illustrates the legacy issue
# of using class mask. Enable once addressed.
batch_size = 1
memory_length = 0
segment_ids = np.array([
[1, 1, 2, 1]
])
expected_segment_matrix = np.array([[
[False, False, True, False],
[False, False, True, False],
[True, True, False, True],
[False, False, True, False]
]]).astype(int)
segment_matrix = tf.cast(xlnet_base._compute_segment_matrix(
segment_ids=segment_ids,
memory_length=memory_length,
batch_size=batch_size,
use_cls_mask=True), dtype=tf.uint8)
self.assertAllClose(segment_matrix, expected_segment_matrix)
class XLNetModelTests(tf.test.TestCase):
def _generate_data(self,
batch_size,
seq_length,
num_predictions=None):
"""Generates sample XLNet data for testing."""
sequence_shape = (batch_size, seq_length)
if num_predictions is not None:
target_mapping = tf.random.uniform(
shape=(batch_size, num_predictions, seq_length))
return {
"input_ids": np.random.randint(10, size=sequence_shape, dtype="int32"),
"segment_ids":
np.random.randint(2, size=sequence_shape, dtype="int32"),
"input_mask":
np.random.randint(2, size=sequence_shape).astype("float32"),
"permutation_mask":
np.random.randint(
2, size=(batch_size, seq_length, seq_length)).astype("float32"),
"target_mapping": target_mapping,
"masked_tokens": tf.random.uniform(shape=sequence_shape),
}
def test_xlnet_model(self):
batch_size = 2
seq_length = 8
num_predictions = 2
hidden_size = 4
xlnet_model = xlnet_base.XLNetBase(
vocab_size=32000,
num_layers=2,
hidden_size=hidden_size,
num_attention_heads=2,
head_size=2,
inner_size=2,
dropout_rate=0.,
attention_dropout_rate=0.,
attention_type="bi",
bi_data=True,
initializer=tf_keras.initializers.RandomNormal(stddev=0.1),
two_stream=False,
tie_attention_biases=True,
reuse_length=0,
inner_activation="relu")
input_data = self._generate_data(batch_size=batch_size,
seq_length=seq_length,
num_predictions=num_predictions)
model_output = xlnet_model(**input_data)
self.assertEqual(model_output[0].shape,
(batch_size, seq_length, hidden_size))
def test_get_config(self):
xlnet_model = xlnet_base.XLNetBase(
vocab_size=32000,
num_layers=12,
hidden_size=36,
num_attention_heads=12,
head_size=12,
inner_size=12,
dropout_rate=0.,
attention_dropout_rate=0.,
attention_type="bi",
bi_data=True,
initializer=tf_keras.initializers.RandomNormal(stddev=0.1),
two_stream=False,
tie_attention_biases=True,
memory_length=0,
reuse_length=0,
inner_activation="relu")
config = xlnet_model.get_config()
new_xlnet = xlnet_base.XLNetBase.from_config(config)
self.assertEqual(config, new_xlnet.get_config())
if __name__ == "__main__":
tf.random.set_seed(0)
tf.test.main()
|