File size: 14,788 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for Keras based XLNet model."""

from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras

from tensorflow.python.distribute import combinations
from official.nlp.modeling.networks import xlnet_base


class RelativePositionEncodingTest(tf.test.TestCase):

  def test_positional_embedding(self):
    """A low-dimensional example is tested.

     With len(pos_seq)=2 and d_model=4:

       pos_seq  = [[1.], [0.]]
       inv_freq = [1., 0.01]
       pos_seq x inv_freq = [[1, 0.01], [0., 0.]]
       pos_emb = [[sin(1.), sin(0.01), cos(1.), cos(0.01)],
                  [sin(0.), sin(0.), cos(0.), cos(0.)]]
               = [[0.84147096, 0.00999983, 0.54030228, 0.99994999],
                 [0., 0., 1., 1.]]
    """
    target = np.array([[[0.84147096, 0.00999983, 0.54030228, 0.99994999],
                        [0., 0., 1., 1.]]])
    hidden_size = 4
    pos_seq = tf.range(1, -1, -1.0)  # [1., 0.]
    encoding_layer = xlnet_base.RelativePositionEncoding(
        hidden_size=hidden_size)
    encoding = encoding_layer(pos_seq, batch_size=None).numpy().astype(float)
    self.assertAllClose(encoding, target)


class ComputePositionEncodingTest(tf.test.TestCase, parameterized.TestCase):

  @combinations.generate(combinations.combine(
      attention_type=["uni", "bi"],
      bi_data=[False, True],
      ))
  def test_compute_position_encoding_smoke(self, attention_type, bi_data):
    hidden_size = 4
    batch_size = 4
    total_length = 8
    seq_length = 4
    position_encoding_layer = xlnet_base.RelativePositionEncoding(
        hidden_size=hidden_size)
    encoding = xlnet_base._compute_positional_encoding(
        attention_type=attention_type,
        position_encoding_layer=position_encoding_layer,
        hidden_size=hidden_size,
        batch_size=batch_size,
        total_length=total_length,
        seq_length=seq_length,
        clamp_length=2,
        bi_data=bi_data,
        dtype=tf.float32)
    self.assertEqual(encoding.shape[0], batch_size)
    self.assertEqual(encoding.shape[2], hidden_size)


class CausalAttentionMaskTests(tf.test.TestCase):

  def test_casual_attention_mask_with_no_memory(self):
    seq_length, memory_length = 3, 0
    causal_attention_mask = xlnet_base._create_causal_attention_mask(
        seq_length=seq_length,
        memory_length=memory_length)

    expected_output = np.array([[1, 0, 0],
                                [1, 1, 0],
                                [1, 1, 1]])
    self.assertAllClose(causal_attention_mask, expected_output)

  def test_casual_attention_mask_with_memory(self):
    seq_length, memory_length = 3, 2
    causal_attention_mask = xlnet_base._create_causal_attention_mask(
        seq_length=seq_length,
        memory_length=memory_length)

    expected_output = np.array([[1, 1, 1, 0, 0],
                                [1, 1, 1, 1, 0],
                                [1, 1, 1, 1, 1]])
    self.assertAllClose(causal_attention_mask, expected_output)

  def test_causal_attention_mask_with_same_length(self):
    seq_length, memory_length = 3, 2
    causal_attention_mask = xlnet_base._create_causal_attention_mask(
        seq_length=seq_length,
        memory_length=memory_length,
        same_length=True)

    expected_output = np.array([[1, 1, 1, 0, 0],
                                [0, 1, 1, 1, 0],
                                [0, 0, 1, 1, 1]])
    self.assertAllClose(causal_attention_mask, expected_output)


class MaskComputationTests(tf.test.TestCase, parameterized.TestCase):

  @combinations.generate(combinations.combine(
      use_input_mask=[False, True],
      use_permutation_mask=[False, True],
      attention_type=["uni", "bi"],
      memory_length=[0, 4],
      ))
  def test_compute_attention_mask_smoke(self,
                                        use_input_mask,
                                        use_permutation_mask,
                                        attention_type,
                                        memory_length):
    """Tests coverage and functionality for different configurations."""
    batch_size = 2
    seq_length = 8
    if use_input_mask:
      input_mask = tf.zeros(shape=(batch_size, seq_length))
    else:
      input_mask = None
    if use_permutation_mask:
      permutation_mask = tf.zeros(shape=(batch_size, seq_length, seq_length))
    else:
      permutation_mask = None
    _, content_mask = xlnet_base._compute_attention_mask(
        input_mask=input_mask,
        permutation_mask=permutation_mask,
        attention_type=attention_type,
        seq_length=seq_length,
        memory_length=memory_length,
        batch_size=batch_size,
        dtype=tf.float32)

    expected_mask_shape = (batch_size, 1,
                           seq_length, seq_length + memory_length)
    if use_input_mask or use_permutation_mask:
      self.assertEqual(content_mask.shape, expected_mask_shape)

  def test_no_input_masks(self):
    query_mask, content_mask = xlnet_base._compute_attention_mask(
        input_mask=None,
        permutation_mask=None,
        attention_type="uni",
        seq_length=8,
        memory_length=2,
        batch_size=2,
        dtype=tf.float32)
    self.assertIsNone(query_mask)
    self.assertIsNone(content_mask)

  def test_input_mask_no_permutation(self):
    """Tests if an input mask is provided but not permutation.

    In the case that only one of input mask or permutation mask is provided
    and the attention type is bidirectional, the query mask should be
    a broadcasted version of the provided mask.

    Content mask should be a broadcasted version of the query mask, where the
    diagonal is 0s.

    """
    seq_length = 4
    batch_size = 1
    memory_length = 0

    input_mask = np.array([[1, 1, 0, 0]])
    permutation_mask = None

    expected_query_mask = input_mask[None, None, :, :]
    expected_content_mask = np.array([[[
        [1, 1, 0, 0],
        [1, 1, 0, 0],
        [1, 1, 1, 0],
        [1, 1, 0, 1]]]])

    query_mask, content_mask = xlnet_base._compute_attention_mask(
        input_mask=input_mask,
        permutation_mask=permutation_mask,
        attention_type="bi",
        seq_length=seq_length,
        memory_length=memory_length,
        batch_size=batch_size,
        dtype=tf.float32)

    self.assertAllClose(query_mask, expected_query_mask)
    self.assertAllClose(content_mask, expected_content_mask)

  def test_permutation_mask_no_input_mask(self):
    """Tests if a permutation mask is provided but not input."""
    seq_length = 2
    batch_size = 1
    memory_length = 0

    input_mask = None
    permutation_mask = np.array([
        [[1, 0],
         [1, 0]],
    ])

    expected_query_mask = permutation_mask[:, None, :, :]
    expected_content_mask = np.array([[[
        [1, 0],
        [1, 1]]]])

    query_mask, content_mask = xlnet_base._compute_attention_mask(
        input_mask=input_mask,
        permutation_mask=permutation_mask,
        attention_type="bi",
        seq_length=seq_length,
        memory_length=memory_length,
        batch_size=batch_size,
        dtype=tf.float32)

    self.assertAllClose(query_mask, expected_query_mask)
    self.assertAllClose(content_mask, expected_content_mask)

  def test_permutation_and_input_mask(self):
    """Tests if both an input and permutation mask are provided."""
    seq_length = 4
    batch_size = 1
    memory_length = 0

    input_mask = np.array([[1, 1, 0, 0]])
    permutation_mask = np.array([[
        [0, 1, 1, 1],
        [1, 0, 1, 1],
        [1, 1, 0, 1],
        [1, 1, 1, 0],
    ]])

    expected_query_mask = np.array([[[
        [0, 1, 0, 0],
        [1, 0, 0, 0],
        [1, 1, 0, 0],
        [1, 1, 0, 0]]]])
    expected_content_mask = np.array([[[
        [1, 1, 0, 0],
        [1, 1, 0, 0],
        [1, 1, 1, 0],
        [1, 1, 0, 1]]]])
    query_mask, content_mask = xlnet_base._compute_attention_mask(
        input_mask=input_mask,
        permutation_mask=permutation_mask,
        attention_type="bi",
        seq_length=seq_length,
        memory_length=memory_length,
        batch_size=batch_size,
        dtype=tf.float32)

    self.assertAllClose(query_mask, expected_query_mask)
    self.assertAllClose(content_mask, expected_content_mask)

  def test_permutation_input_uni_mask(self):
    """Tests if an input, permutation and causal mask are provided."""
    seq_length = 4
    batch_size = 1
    memory_length = 0

    input_mask = np.array([[1, 1, 1, 0]])
    permutation_mask = np.array([[
        [0, 1, 1, 1],
        [1, 0, 1, 1],
        [1, 1, 0, 1],
        [1, 1, 1, 0],
    ]])

    expected_query_mask = np.array([[[
        [0, 0, 0, 0],
        [1, 0, 0, 0],
        [1, 1, 0, 0],
        [1, 1, 1, 0]]]])
    expected_content_mask = np.array([[[
        [1, 0, 0, 0],
        [1, 1, 0, 0],
        [1, 1, 1, 0],
        [1, 1, 1, 1]]]])
    query_mask, content_mask = xlnet_base._compute_attention_mask(
        input_mask=input_mask,
        permutation_mask=permutation_mask,
        attention_type="uni",
        seq_length=seq_length,
        memory_length=memory_length,
        batch_size=batch_size,
        dtype=tf.float32)

    self.assertAllClose(query_mask, expected_query_mask)
    self.assertAllClose(content_mask, expected_content_mask)


class SegmentMatrixTests(tf.test.TestCase):

  def test_no_segment_ids(self):
    segment_matrix = xlnet_base._compute_segment_matrix(
        segment_ids=None,
        memory_length=2,
        batch_size=1,
        use_cls_mask=False)
    self.assertIsNone(segment_matrix)

  def test_basic(self):
    batch_size = 1
    memory_length = 0
    segment_ids = np.array([
        [1, 1, 2, 1]
    ])
    expected_segment_matrix = np.array([[
        [False, False, True, False],
        [False, False, True, False],
        [True, True, False, True],
        [False, False, True, False]
    ]])
    segment_matrix = xlnet_base._compute_segment_matrix(
        segment_ids=segment_ids,
        memory_length=memory_length,
        batch_size=batch_size,
        use_cls_mask=False)
    self.assertAllClose(segment_matrix, expected_segment_matrix)

  def test_basic_with_memory(self):
    batch_size = 1
    memory_length = 1
    segment_ids = np.array([
        [1, 1, 2, 1]
    ])
    expected_segment_matrix = np.array([[
        [True, False, False, True, False],
        [True, False, False, True, False],
        [True, True, True, False, True],
        [True, False, False, True, False]
    ]]).astype(int)
    segment_matrix = tf.cast(xlnet_base._compute_segment_matrix(
        segment_ids=segment_ids,
        memory_length=memory_length,
        batch_size=batch_size,
        use_cls_mask=False), dtype=tf.uint8)
    self.assertAllClose(segment_matrix, expected_segment_matrix)

  def dont_test_basic_with_class_mask(self):
    # TODO(allencwang) - this test should pass but illustrates the legacy issue
    # of using class mask. Enable once addressed.
    batch_size = 1
    memory_length = 0
    segment_ids = np.array([
        [1, 1, 2, 1]
    ])
    expected_segment_matrix = np.array([[
        [False, False, True, False],
        [False, False, True, False],
        [True, True, False, True],
        [False, False, True, False]
    ]]).astype(int)
    segment_matrix = tf.cast(xlnet_base._compute_segment_matrix(
        segment_ids=segment_ids,
        memory_length=memory_length,
        batch_size=batch_size,
        use_cls_mask=True), dtype=tf.uint8)
    self.assertAllClose(segment_matrix, expected_segment_matrix)


class XLNetModelTests(tf.test.TestCase):

  def _generate_data(self,
                     batch_size,
                     seq_length,
                     num_predictions=None):
    """Generates sample XLNet data for testing."""
    sequence_shape = (batch_size, seq_length)
    if num_predictions is not None:
      target_mapping = tf.random.uniform(
          shape=(batch_size, num_predictions, seq_length))

    return {
        "input_ids": np.random.randint(10, size=sequence_shape, dtype="int32"),
        "segment_ids":
            np.random.randint(2, size=sequence_shape, dtype="int32"),
        "input_mask":
            np.random.randint(2, size=sequence_shape).astype("float32"),
        "permutation_mask":
            np.random.randint(
                2, size=(batch_size, seq_length, seq_length)).astype("float32"),
        "target_mapping": target_mapping,
        "masked_tokens": tf.random.uniform(shape=sequence_shape),
    }

  def test_xlnet_model(self):
    batch_size = 2
    seq_length = 8
    num_predictions = 2
    hidden_size = 4
    xlnet_model = xlnet_base.XLNetBase(
        vocab_size=32000,
        num_layers=2,
        hidden_size=hidden_size,
        num_attention_heads=2,
        head_size=2,
        inner_size=2,
        dropout_rate=0.,
        attention_dropout_rate=0.,
        attention_type="bi",
        bi_data=True,
        initializer=tf_keras.initializers.RandomNormal(stddev=0.1),
        two_stream=False,
        tie_attention_biases=True,
        reuse_length=0,
        inner_activation="relu")
    input_data = self._generate_data(batch_size=batch_size,
                                     seq_length=seq_length,
                                     num_predictions=num_predictions)
    model_output = xlnet_model(**input_data)
    self.assertEqual(model_output[0].shape,
                     (batch_size, seq_length, hidden_size))

  def test_get_config(self):
    xlnet_model = xlnet_base.XLNetBase(
        vocab_size=32000,
        num_layers=12,
        hidden_size=36,
        num_attention_heads=12,
        head_size=12,
        inner_size=12,
        dropout_rate=0.,
        attention_dropout_rate=0.,
        attention_type="bi",
        bi_data=True,
        initializer=tf_keras.initializers.RandomNormal(stddev=0.1),
        two_stream=False,
        tie_attention_biases=True,
        memory_length=0,
        reuse_length=0,
        inner_activation="relu")
    config = xlnet_model.get_config()
    new_xlnet = xlnet_base.XLNetBase.from_config(config)
    self.assertEqual(config, new_xlnet.get_config())


if __name__ == "__main__":
  tf.random.set_seed(0)
  tf.test.main()