Spaces:
Sleeping
Sleeping
File size: 11,279 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base class for Decoding Strategies (beam_search, top_k, top_p and greedy)."""
import abc
from typing import Any, Callable, Dict, Optional, Tuple
import tensorflow as tf, tf_keras
from tensorflow.python.framework import dtypes
from official.modeling import tf_utils
Output = Tuple[tf.Tensor, tf.Tensor, Optional[tf.Tensor]]
InternalState = Tuple[tf.Tensor, tf.Tensor, tf.Tensor, Dict]
InitialState = Tuple[Dict[str, Any], Dict[str, Any]]
class StateKeys:
"""Keys to dictionary storing the state of Decoding loop."""
# Variable storing the loop index.
CUR_INDEX = "CUR_INDEX"
# Top sequences that are alive for each batch item. Alive sequences are ones
# that have not generated an EOS token. Sequences that reach EOS are marked as
# finished and moved to the FINISHED_SEQ tensor.
# Has shape [batch_size, beam_size, CUR_INDEX + 1] for SequenceBeamSearch and
# [batch_size, CUR_INDEX + 1] otherwise.
ALIVE_SEQ = "ALIVE_SEQ"
# Log probabilities of each alive sequence. Shape [batch_size, beam_size]
ALIVE_LOG_PROBS = "ALIVE_LOG_PROBS"
# Dictionary of cached values for each alive sequence. The cache stores
# the encoder output, attention bias, and the decoder attention output from
# the previous iteration.
ALIVE_CACHE = "ALIVE_CACHE"
# The initial model state/cache after model processing the initial token.
# The cache will be filled if extra_cache_output is true.
INITIAL_OUTPUT_CACHE = "INITIAL_OUTPUT_CACHE"
# Top finished sequences for each batch item.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]. Sequences that are
# shorter than CUR_INDEX + 1 are padded with 0s.
FINISHED_SEQ = "FINISHED_SEQ"
# Scores for each finished sequence. Score = log probability / length norm
# Shape [batch_size, beam_size]
FINISHED_SCORES = "FINISHED_SCORES"
# Flags indicating which sequences in the finished sequences are finished.
# At the beginning, all of the sequences in FINISHED_SEQ are filler values.
# True -> finished sequence, False -> filler. Shape [batch_size, beam_size]
FINISHED_FLAGS = "FINISHED_FLAGS"
def log_prob_from_logits(logits):
return logits - tf.reduce_logsumexp(logits, axis=-1, keepdims=True)
def shape_list(tensor):
"""Return a list of the tensor's shape, and ensure no None values in list."""
return tf_utils.get_shape_list(tensor)
def get_shape_keep_last_dim(tensor):
shape_list_obj = shape_list(tensor)
for i in range(len(shape_list_obj) - 1):
shape_list_obj[i] = None
if isinstance(shape_list_obj[-1], tf.Tensor):
shape_list_obj[-1] = None
return tf.TensorShape(shape_list_obj)
def expand_to_same_rank(tensor, target):
"""Expands a given tensor to target's rank to be broadcastable.
Args:
tensor: input tensor to tile. Shape: [b, d1, ..., da]
target: target tensor. Shape: [b, d1, ..., da, ..., dn]
Returns:
Tiled tensor of shape [b, d1, ..., da, 1, ..., 1] with same rank of target
Raises:
ValueError, if the shape rank of rank tensor/target is None.
"""
if tensor.shape.rank is None:
raise ValueError("Expect rank for tensor shape, but got None.")
if target.shape.rank is None:
raise ValueError("Expect rank for target shape, but got None.")
with tf.name_scope("expand_rank"):
diff_rank = target.shape.rank - tensor.shape.rank
for _ in range(diff_rank):
tensor = tf.expand_dims(tensor, -1)
return tensor
class DecodingModule(tf.Module, metaclass=abc.ABCMeta):
"""A base class for the API required for decoding (go/decoding-tf-nlp)."""
def __init__(self,
length_normalization_fn: Callable[[int, tf.DType], float],
dtype: tf.DType = tf.float32,
decoding_name: Optional[str] = None,
extra_cache_output: bool = False):
"""Initialize the Decoding Module.
Args:
length_normalization_fn: Closure for returning length normalization
parameter. Function accepts input as length, dtype and returns float.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
decoding_name: an optional name for the decoding loop tensors.
extra_cache_output: If true, the first cache will be in the states.
"""
self.length_normalization_fn = length_normalization_fn
self.dtype = tf.as_dtype(dtype)
self.decoding_name = decoding_name
def generate(self,
initial_ids: tf.Tensor,
initial_cache: Dict[str, tf.Tensor],
initial_log_probs: Optional[tf.Tensor] = None) -> Output:
"""Implements the decoding strategy (beam_search or sampling).
Args:
initial_ids: initial ids to pass into the symbols_to_logits_fn. int tensor
with shape [batch_size, 1]
initial_cache: dictionary for caching model outputs from previous step.
initial_log_probs: Optionally initial log probs if there is a prefix
sequence we want to start to decode from.
Returns:
Tuple of tensors representing
finished_sequence: shape [batch, max_seq_length]
finished_scores: [batch]
first_cache: The cache after init token
"""
batch_size = (
initial_ids.shape.as_list()[0]
if self.padded_decode else tf.shape(initial_ids)[0])
state, state_shapes = self._create_initial_state(initial_ids, initial_cache,
batch_size,
initial_log_probs)
def _generate_step(state):
topk_seq, topk_log_probs, topk_ids, new_cache = self._grow_alive_seq(
state, batch_size)
new_finished_flags = self._finished_flags(topk_ids, state)
alive_state = self._get_new_alive_state(topk_seq,
topk_log_probs,
new_finished_flags,
new_cache)
finished_state = self._get_new_finished_state(state,
topk_seq,
topk_log_probs,
new_finished_flags,
batch_size)
new_state = {
StateKeys.CUR_INDEX: state[StateKeys.CUR_INDEX] + 1
}
new_state.update(alive_state)
new_state.update(finished_state)
if self.extra_cache_output:
i = state[StateKeys.CUR_INDEX]
old_cache = state[StateKeys.INITIAL_OUTPUT_CACHE]
def update_with_cache(new_state, cache):
"""Updates new_state with cache."""
new_state.update({StateKeys.INITIAL_OUTPUT_CACHE: cache})
tf.cond(
tf.equal(i, 0), lambda: update_with_cache(new_state, new_cache),
lambda: update_with_cache(new_state, old_cache))
return [new_state]
finished_state = tf.nest.map_structure(
tf.stop_gradient,
tf.while_loop(
self._continue_search,
_generate_step,
loop_vars=[state],
shape_invariants=[state_shapes],
parallel_iterations=1,
name=self.decoding_name))
final_state = self._process_finished_state(finished_state[0])
return final_state
@abc.abstractmethod
def _create_initial_state(
self,
initial_ids: tf.Tensor,
initial_cache: Dict[str, tf.Tensor],
batch_size: int,
initial_log_probs: Optional[tf.Tensor] = None) -> InitialState:
"""Return initial state dictionary and its shape invariants."""
pass
@abc.abstractmethod
def _grow_alive_seq(self,
state: Dict[str, Any],
batch_size: int) -> InternalState:
"""Grow alive sequences by one token.
Args:
state: A dictionary with the current loop state.
batch_size: The given batch size
Returns:
Tuple of
(Top sequences,
Scores of returned sequences,
New ids,
New alive cache)
"""
pass
@abc.abstractmethod
def _get_new_alive_state(
self,
new_seq: tf.Tensor,
new_log_probs: tf.Tensor,
new_finished_flags: tf.Tensor,
new_cache: Dict[str, tf.Tensor]) -> Dict[str, Any]:
"""Gather the sequences that are still alive.
Args:
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape
new_log_probs: Log probabilities of new sequences float32 tensor with
shape
new_finished_flags: A boolean Tensor indicates which sequences are live.
new_cache: Dict of cached values for each sequence.
Returns:
Dictionary with alive keys from StateKeys.
"""
pass
@abc.abstractmethod
def _get_new_finished_state(self,
state: Dict[str, Any],
new_seq: tf.Tensor,
new_log_probs: tf.Tensor,
new_finished_flags: tf.Tensor,
batch_size: int) -> Dict[str, tf.Tensor]:
"""Combine new and old finished sequences.
Args:
state: A dictionary with the current loop state.
new_seq: New sequences generated by growing the current alive sequences
int32 tensor.
new_log_probs: Log probabilities of new sequences float32 tensor with
shape.
new_finished_flags: A boolean Tensor indicates which sequences are live.
batch_size: The given batch size.
Returns:
Dictionary with finished keys from StateKeys.
"""
pass
@abc.abstractmethod
def _process_finished_state(self, finished_state: Dict[str, Any]) -> Output:
"""Process the alive/finished state to return final sequences and scores."""
pass
@abc.abstractmethod
def _continue_search(self, state: Dict[str, Any]) -> tf.Tensor:
"""Returns a bool tensor if the decoding loop should continue."""
pass
@abc.abstractmethod
def _finished_flags(self,
topk_ids: tf.Tensor,
state: Dict[str, Any]) -> tf.Tensor:
"""Calculate the finished flags."""
pass
def inf(self):
"""Returns a value close to infinity, but is still finite in `dtype`.
This is useful to get a very large value that is still zero when multiplied
by zero. The floating-point "Inf" value is NaN when multiplied by zero.
Returns:
A very large value.
"""
if self.dtype == dtypes.float32 or self.dtype == dtypes.bfloat16:
return 1e7
elif self.dtype == dtypes.float16:
return dtypes.float16.max
else:
raise AssertionError("Invalid dtype: %s" % self.dtype)
|