File size: 9,606 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Module for extracting segments from sentences in documents."""

import tensorflow as tf, tf_keras


# Get a random tensor like `positions` and make some decisions
def _get_random(positions, random_fn):
  flat_random = random_fn(
      shape=tf.shape(positions.flat_values),
      minval=0,
      maxval=1,
      dtype=tf.float32)
  return positions.with_flat_values(flat_random)


# For every position j in a row, sample a position preceeding j or
# a position which is [0, j-1]
def _random_int_up_to(maxval, random_fn):
  # Need to cast because the int kernel for uniform doesn't support bcast.
  # We add one because maxval is exclusive, and this will get rounded down
  # when we cast back to int.
  float_maxval = tf.cast(maxval, tf.float32)
  return tf.cast(
      random_fn(
          shape=tf.shape(maxval),
          minval=tf.zeros_like(float_maxval),
          maxval=float_maxval),
      dtype=maxval.dtype)


def _random_int_from_range(minval, maxval, random_fn):
  # Need to cast because the int kernel for uniform doesn't support bcast.
  # We add one because maxval is exclusive, and this will get rounded down
  # when we cast back to int.
  float_minval = tf.cast(minval, tf.float32)
  float_maxval = tf.cast(maxval, tf.float32)
  return tf.cast(
      random_fn(tf.shape(maxval), minval=float_minval, maxval=float_maxval),
      maxval.dtype)


def _sample_from_other_batch(sentences, random_fn):
  """Samples sentences from other batches."""
  # other_batch: <int64>[num_sentences]: The batch to sample from for each
  # sentence.
  other_batch = random_fn(
      shape=[tf.size(sentences)],
      minval=0,
      maxval=sentences.nrows() - 1,
      dtype=tf.int64)

  other_batch += tf.cast(other_batch >= sentences.value_rowids(), tf.int64)

  # other_sentence: <int64>[num_sentences]: The sentence within each batch
  # that we sampled.
  other_sentence = _random_int_up_to(
      tf.gather(sentences.row_lengths(), other_batch), random_fn)
  return sentences.with_values(tf.stack([other_batch, other_sentence], axis=1))


def get_sentence_order_labels(sentences,
                              random_threshold=0.5,
                              random_next_threshold=0.5,
                              random_fn=tf.random.uniform):
  """Extract segments and labels for sentence order prediction (SOP) task.

  Extracts the segment and labels for the sentence order prediction task
  defined in "ALBERT: A Lite BERT for Self-Supervised Learning of Language
  Representations" (https://arxiv.org/pdf/1909.11942.pdf)

  Args:
    sentences: a `RaggedTensor` of shape [batch, (num_sentences)] with string
      dtype.
    random_threshold: (optional) A float threshold between 0 and 1, used to
      determine whether to extract a random, out-of-batch sentence or a
      suceeding sentence. Higher value favors succeeding sentence.
    random_next_threshold: (optional) A float threshold between 0 and 1, used to
      determine whether to extract either a random, out-of-batch, or succeeding
      sentence or a preceeding sentence. Higher value favors preceeding
      sentences.
    random_fn: (optional) An op used to generate random float values.

  Returns:
    a tuple of (preceeding_or_random_next, is_suceeding_or_random) where:
      preceeding_or_random_next: a `RaggedTensor` of strings with the same shape
        as `sentences` and contains either a preceeding, suceeding, or random
        out-of-batch sentence respective to its counterpart in `sentences` and
        dependent on its label in `is_preceeding_or_random_next`.
      is_suceeding_or_random: a `RaggedTensor` of bool values with the
        same shape as `sentences` and is True if it's corresponding sentence in
        `preceeding_or_random_next` is a random or suceeding sentence, False
        otherwise.
  """
  # Create a RaggedTensor in the same shape as sentences ([doc, (sentences)])
  # whose values are index positions.
  positions = tf.ragged.range(sentences.row_lengths())

  row_lengths_broadcasted = tf.expand_dims(positions.row_lengths(),
                                           -1) + 0 * positions
  row_lengths_broadcasted_flat = row_lengths_broadcasted.flat_values

  # Generate indices for all preceeding, succeeding and random.
  # For every position j in a row, sample a position preceeding j or
  # a position which is [0, j-1]
  all_preceding = tf.ragged.map_flat_values(_random_int_up_to, positions,
                                            random_fn)

  # For every position j, sample a position following j, or a position
  # which is [j, row_max]
  all_succeeding = positions.with_flat_values(
      tf.ragged.map_flat_values(_random_int_from_range,
                                positions.flat_values + 1,
                                row_lengths_broadcasted_flat, random_fn))

  # Convert to format that is convenient for `gather_nd`
  rows_broadcasted = tf.expand_dims(tf.range(sentences.nrows()),
                                    -1) + 0 * positions
  all_preceding_nd = tf.stack([rows_broadcasted, all_preceding], -1)
  all_succeeding_nd = tf.stack([rows_broadcasted, all_succeeding], -1)
  all_random_nd = _sample_from_other_batch(positions, random_fn)

  # There's a few spots where there is no "preceding" or "succeeding" item (e.g.
  # first and last sentences in a document). Mark where these are and we will
  # patch them up to grab a random sentence from another document later.
  all_zeros = tf.zeros_like(positions)
  all_ones = tf.ones_like(positions)
  valid_preceding_mask = tf.cast(
      tf.concat([all_zeros[:, :1], all_ones[:, 1:]], -1), tf.bool)
  valid_succeeding_mask = tf.cast(
      tf.concat([all_ones[:, :-1], all_zeros[:, -1:]], -1), tf.bool)

  # Decide what to use for the segment: (1) random, out-of-batch, (2) preceeding
  # item, or (3) succeeding.
  # Should get out-of-batch instead of succeeding item
  should_get_random = ((_get_random(positions, random_fn) > random_threshold)
                       | tf.logical_not(valid_succeeding_mask))
  random_or_succeeding_nd = tf.compat.v1.where(should_get_random, all_random_nd,
                                               all_succeeding_nd)
  # Choose which items should get a random succeeding item. Force positions that
  # don't have a valid preceeding items to get a random succeeding item.
  should_get_random_or_succeeding = (
      (_get_random(positions, random_fn) > random_next_threshold)
      | tf.logical_not(valid_preceding_mask))
  gather_indices = tf.compat.v1.where(should_get_random_or_succeeding,
                                      random_or_succeeding_nd, all_preceding_nd)
  return (tf.gather_nd(sentences,
                       gather_indices), should_get_random_or_succeeding)


def get_next_sentence_labels(sentences,
                             random_threshold=0.5,
                             random_fn=tf.random.uniform):
  """Extracts the next sentence label from sentences.

  Args:
    sentences: A `RaggedTensor` of strings w/ shape [batch, (num_sentences)].
    random_threshold: (optional) A float threshold between 0 and 1, used to
      determine whether to extract a random sentence or the immediate next
      sentence. Higher value favors next sentence.
    random_fn: (optional) An op used to generate random float values.

  Returns:
    A tuple of (next_sentence_or_random, is_next_sentence) where:

    next_sentence_or_random:  A `Tensor` with shape [num_sentences] that
      contains either the subsequent sentence of `segment_a` or a randomly
      injected sentence.
    is_next_sentence: A `Tensor` of bool w/ shape [num_sentences]
      that contains whether or not `next_sentence_or_random` is truly a
      subsequent sentence or not.
  """
  # shift everyone to get the next sentence predictions positions
  positions = tf.ragged.range(sentences.row_lengths())

  # Shift every position down to the right.
  next_sentences_pos = (positions + 1) % tf.expand_dims(sentences.row_lengths(),
                                                        1)
  rows_broadcasted = tf.expand_dims(tf.range(sentences.nrows()),
                                    -1) + 0 * positions
  next_sentences_pos_nd = tf.stack([rows_broadcasted, next_sentences_pos], -1)
  all_random_nd = _sample_from_other_batch(positions, random_fn)

  # Mark the items that don't have a next sentence (e.g. the last
  # sentences in the document). We will patch these up and force them to grab a
  # random sentence from a random document.
  valid_next_sentences = tf.cast(
      tf.concat([
          tf.ones_like(positions)[:, :-1],
          tf.zeros([positions.nrows(), 1], dtype=tf.int64)
      ], -1), tf.bool)

  is_random = ((_get_random(positions, random_fn) > random_threshold)
               | tf.logical_not(valid_next_sentences))
  gather_indices = tf.compat.v1.where(is_random, all_random_nd,
                                      next_sentences_pos_nd)
  return tf.gather_nd(sentences, gather_indices), tf.logical_not(is_random)