Spaces:
Sleeping
Sleeping
File size: 9,606 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module for extracting segments from sentences in documents."""
import tensorflow as tf, tf_keras
# Get a random tensor like `positions` and make some decisions
def _get_random(positions, random_fn):
flat_random = random_fn(
shape=tf.shape(positions.flat_values),
minval=0,
maxval=1,
dtype=tf.float32)
return positions.with_flat_values(flat_random)
# For every position j in a row, sample a position preceeding j or
# a position which is [0, j-1]
def _random_int_up_to(maxval, random_fn):
# Need to cast because the int kernel for uniform doesn't support bcast.
# We add one because maxval is exclusive, and this will get rounded down
# when we cast back to int.
float_maxval = tf.cast(maxval, tf.float32)
return tf.cast(
random_fn(
shape=tf.shape(maxval),
minval=tf.zeros_like(float_maxval),
maxval=float_maxval),
dtype=maxval.dtype)
def _random_int_from_range(minval, maxval, random_fn):
# Need to cast because the int kernel for uniform doesn't support bcast.
# We add one because maxval is exclusive, and this will get rounded down
# when we cast back to int.
float_minval = tf.cast(minval, tf.float32)
float_maxval = tf.cast(maxval, tf.float32)
return tf.cast(
random_fn(tf.shape(maxval), minval=float_minval, maxval=float_maxval),
maxval.dtype)
def _sample_from_other_batch(sentences, random_fn):
"""Samples sentences from other batches."""
# other_batch: <int64>[num_sentences]: The batch to sample from for each
# sentence.
other_batch = random_fn(
shape=[tf.size(sentences)],
minval=0,
maxval=sentences.nrows() - 1,
dtype=tf.int64)
other_batch += tf.cast(other_batch >= sentences.value_rowids(), tf.int64)
# other_sentence: <int64>[num_sentences]: The sentence within each batch
# that we sampled.
other_sentence = _random_int_up_to(
tf.gather(sentences.row_lengths(), other_batch), random_fn)
return sentences.with_values(tf.stack([other_batch, other_sentence], axis=1))
def get_sentence_order_labels(sentences,
random_threshold=0.5,
random_next_threshold=0.5,
random_fn=tf.random.uniform):
"""Extract segments and labels for sentence order prediction (SOP) task.
Extracts the segment and labels for the sentence order prediction task
defined in "ALBERT: A Lite BERT for Self-Supervised Learning of Language
Representations" (https://arxiv.org/pdf/1909.11942.pdf)
Args:
sentences: a `RaggedTensor` of shape [batch, (num_sentences)] with string
dtype.
random_threshold: (optional) A float threshold between 0 and 1, used to
determine whether to extract a random, out-of-batch sentence or a
suceeding sentence. Higher value favors succeeding sentence.
random_next_threshold: (optional) A float threshold between 0 and 1, used to
determine whether to extract either a random, out-of-batch, or succeeding
sentence or a preceeding sentence. Higher value favors preceeding
sentences.
random_fn: (optional) An op used to generate random float values.
Returns:
a tuple of (preceeding_or_random_next, is_suceeding_or_random) where:
preceeding_or_random_next: a `RaggedTensor` of strings with the same shape
as `sentences` and contains either a preceeding, suceeding, or random
out-of-batch sentence respective to its counterpart in `sentences` and
dependent on its label in `is_preceeding_or_random_next`.
is_suceeding_or_random: a `RaggedTensor` of bool values with the
same shape as `sentences` and is True if it's corresponding sentence in
`preceeding_or_random_next` is a random or suceeding sentence, False
otherwise.
"""
# Create a RaggedTensor in the same shape as sentences ([doc, (sentences)])
# whose values are index positions.
positions = tf.ragged.range(sentences.row_lengths())
row_lengths_broadcasted = tf.expand_dims(positions.row_lengths(),
-1) + 0 * positions
row_lengths_broadcasted_flat = row_lengths_broadcasted.flat_values
# Generate indices for all preceeding, succeeding and random.
# For every position j in a row, sample a position preceeding j or
# a position which is [0, j-1]
all_preceding = tf.ragged.map_flat_values(_random_int_up_to, positions,
random_fn)
# For every position j, sample a position following j, or a position
# which is [j, row_max]
all_succeeding = positions.with_flat_values(
tf.ragged.map_flat_values(_random_int_from_range,
positions.flat_values + 1,
row_lengths_broadcasted_flat, random_fn))
# Convert to format that is convenient for `gather_nd`
rows_broadcasted = tf.expand_dims(tf.range(sentences.nrows()),
-1) + 0 * positions
all_preceding_nd = tf.stack([rows_broadcasted, all_preceding], -1)
all_succeeding_nd = tf.stack([rows_broadcasted, all_succeeding], -1)
all_random_nd = _sample_from_other_batch(positions, random_fn)
# There's a few spots where there is no "preceding" or "succeeding" item (e.g.
# first and last sentences in a document). Mark where these are and we will
# patch them up to grab a random sentence from another document later.
all_zeros = tf.zeros_like(positions)
all_ones = tf.ones_like(positions)
valid_preceding_mask = tf.cast(
tf.concat([all_zeros[:, :1], all_ones[:, 1:]], -1), tf.bool)
valid_succeeding_mask = tf.cast(
tf.concat([all_ones[:, :-1], all_zeros[:, -1:]], -1), tf.bool)
# Decide what to use for the segment: (1) random, out-of-batch, (2) preceeding
# item, or (3) succeeding.
# Should get out-of-batch instead of succeeding item
should_get_random = ((_get_random(positions, random_fn) > random_threshold)
| tf.logical_not(valid_succeeding_mask))
random_or_succeeding_nd = tf.compat.v1.where(should_get_random, all_random_nd,
all_succeeding_nd)
# Choose which items should get a random succeeding item. Force positions that
# don't have a valid preceeding items to get a random succeeding item.
should_get_random_or_succeeding = (
(_get_random(positions, random_fn) > random_next_threshold)
| tf.logical_not(valid_preceding_mask))
gather_indices = tf.compat.v1.where(should_get_random_or_succeeding,
random_or_succeeding_nd, all_preceding_nd)
return (tf.gather_nd(sentences,
gather_indices), should_get_random_or_succeeding)
def get_next_sentence_labels(sentences,
random_threshold=0.5,
random_fn=tf.random.uniform):
"""Extracts the next sentence label from sentences.
Args:
sentences: A `RaggedTensor` of strings w/ shape [batch, (num_sentences)].
random_threshold: (optional) A float threshold between 0 and 1, used to
determine whether to extract a random sentence or the immediate next
sentence. Higher value favors next sentence.
random_fn: (optional) An op used to generate random float values.
Returns:
A tuple of (next_sentence_or_random, is_next_sentence) where:
next_sentence_or_random: A `Tensor` with shape [num_sentences] that
contains either the subsequent sentence of `segment_a` or a randomly
injected sentence.
is_next_sentence: A `Tensor` of bool w/ shape [num_sentences]
that contains whether or not `next_sentence_or_random` is truly a
subsequent sentence or not.
"""
# shift everyone to get the next sentence predictions positions
positions = tf.ragged.range(sentences.row_lengths())
# Shift every position down to the right.
next_sentences_pos = (positions + 1) % tf.expand_dims(sentences.row_lengths(),
1)
rows_broadcasted = tf.expand_dims(tf.range(sentences.nrows()),
-1) + 0 * positions
next_sentences_pos_nd = tf.stack([rows_broadcasted, next_sentences_pos], -1)
all_random_nd = _sample_from_other_batch(positions, random_fn)
# Mark the items that don't have a next sentence (e.g. the last
# sentences in the document). We will patch these up and force them to grab a
# random sentence from a random document.
valid_next_sentences = tf.cast(
tf.concat([
tf.ones_like(positions)[:, :-1],
tf.zeros([positions.nrows(), 1], dtype=tf.int64)
], -1), tf.bool)
is_random = ((_get_random(positions, random_fn) > random_threshold)
| tf.logical_not(valid_next_sentences))
gather_indices = tf.compat.v1.where(is_random, all_random_nd,
next_sentences_pos_nd)
return tf.gather_nd(sentences, gather_indices), tf.logical_not(is_random)
|