Spaces:
Sleeping
Sleeping
File size: 29,513 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of Mobile Video Networks.
Reference: https://arxiv.org/pdf/2103.11511.pdf
"""
import dataclasses
import math
from typing import Dict, Mapping, Optional, Sequence, Tuple, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.projects.movinet.modeling import movinet_layers
from official.vision.modeling.backbones import factory
# Defines a set of kernel sizes and stride sizes to simplify and shorten
# architecture definitions for configs below.
KernelSize = Tuple[int, int, int]
# K(ab) represents a 3D kernel of size (a, b, b)
K13: KernelSize = (1, 3, 3)
K15: KernelSize = (1, 5, 5)
K33: KernelSize = (3, 3, 3)
K53: KernelSize = (5, 3, 3)
# S(ab) represents a 3D stride of size (a, b, b)
S11: KernelSize = (1, 1, 1)
S12: KernelSize = (1, 2, 2)
S22: KernelSize = (2, 2, 2)
S21: KernelSize = (2, 1, 1)
# Type for a state container (map)
TensorMap = Mapping[str, tf.Tensor]
@dataclasses.dataclass
class BlockSpec:
"""Configuration of a block."""
@dataclasses.dataclass
class StemSpec(BlockSpec):
"""Configuration of a Movinet block."""
filters: int = 0
kernel_size: KernelSize = (0, 0, 0)
strides: KernelSize = (0, 0, 0)
@dataclasses.dataclass
class MovinetBlockSpec(BlockSpec):
"""Configuration of a Movinet block."""
base_filters: int = 0
expand_filters: Sequence[int] = ()
kernel_sizes: Sequence[KernelSize] = ()
strides: Sequence[KernelSize] = ()
@dataclasses.dataclass
class HeadSpec(BlockSpec):
"""Configuration of a Movinet block."""
project_filters: int = 0
head_filters: int = 0
# Block specs specify the architecture of each model
BLOCK_SPECS = {
'a0': (
StemSpec(filters=8, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=8,
expand_filters=(24,),
kernel_sizes=(K15,),
strides=(S12,)),
MovinetBlockSpec(
base_filters=32,
expand_filters=(80, 80, 80),
kernel_sizes=(K33, K33, K33),
strides=(S12, S11, S11)),
MovinetBlockSpec(
base_filters=56,
expand_filters=(184, 112, 184),
kernel_sizes=(K53, K33, K33),
strides=(S12, S11, S11)),
MovinetBlockSpec(
base_filters=56,
expand_filters=(184, 184, 184, 184),
kernel_sizes=(K53, K33, K33, K33),
strides=(S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=104,
expand_filters=(384, 280, 280, 344),
kernel_sizes=(K53, K15, K15, K15),
strides=(S12, S11, S11, S11)),
HeadSpec(project_filters=480, head_filters=2048),
),
'a1': (
StemSpec(filters=16, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=16,
expand_filters=(40, 40),
kernel_sizes=(K15, K33),
strides=(S12, S11)),
MovinetBlockSpec(
base_filters=40,
expand_filters=(96, 120, 96, 96),
kernel_sizes=(K33, K33, K33, K33),
strides=(S12, S11, S11, S11)),
MovinetBlockSpec(
base_filters=64,
expand_filters=(216, 128, 216, 168, 216),
kernel_sizes=(K53, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=64,
expand_filters=(216, 216, 216, 128, 128, 216),
kernel_sizes=(K53, K33, K33, K33, K15, K33),
strides=(S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=136,
expand_filters=(456, 360, 360, 360, 456, 456, 544),
kernel_sizes=(K53, K15, K15, K15, K15, K33, K13),
strides=(S12, S11, S11, S11, S11, S11, S11)),
HeadSpec(project_filters=600, head_filters=2048),
),
'a2': (
StemSpec(filters=16, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=16,
expand_filters=(40, 40, 64),
kernel_sizes=(K15, K33, K33),
strides=(S12, S11, S11)),
MovinetBlockSpec(
base_filters=40,
expand_filters=(96, 120, 96, 96, 120),
kernel_sizes=(K33, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=72,
expand_filters=(240, 160, 240, 192, 240),
kernel_sizes=(K53, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=72,
expand_filters=(240, 240, 240, 240, 144, 240),
kernel_sizes=(K53, K33, K33, K33, K15, K33),
strides=(S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=144,
expand_filters=(480, 384, 384, 480, 480, 480, 576),
kernel_sizes=(K53, K15, K15, K15, K15, K33, K13),
strides=(S12, S11, S11, S11, S11, S11, S11)),
HeadSpec(project_filters=640, head_filters=2048),
),
'a3': (
StemSpec(filters=16, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=16,
expand_filters=(40, 40, 64, 40),
kernel_sizes=(K15, K33, K33, K33),
strides=(S12, S11, S11, S11)),
MovinetBlockSpec(
base_filters=48,
expand_filters=(112, 144, 112, 112, 144, 144),
kernel_sizes=(K33, K33, K33, K15, K33, K33),
strides=(S12, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=80,
expand_filters=(240, 152, 240, 192, 240),
kernel_sizes=(K53, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=88,
expand_filters=(264, 264, 264, 264, 160, 264, 264, 264),
kernel_sizes=(K53, K33, K33, K33, K15, K33, K33, K33),
strides=(S11, S11, S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=168,
expand_filters=(560, 448, 448, 560, 560, 560, 448, 448, 560, 672),
kernel_sizes=(K53, K15, K15, K15, K15, K33, K15, K15, K33, K13),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11, S11)),
HeadSpec(project_filters=744, head_filters=2048),
),
'a4': (
StemSpec(filters=24, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=24,
expand_filters=(64, 64, 96, 64, 96, 64),
kernel_sizes=(K15, K33, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=56,
expand_filters=(168, 168, 136, 136, 168, 168, 168, 136, 136),
kernel_sizes=(K33, K33, K33, K33, K33, K33, K33, K15, K33),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=96,
expand_filters=(320, 160, 320, 192, 320, 160, 320, 256, 320),
kernel_sizes=(K53, K33, K33, K33, K33, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=96,
expand_filters=(320, 320, 320, 320, 192, 320, 320, 192, 320, 320),
kernel_sizes=(K53, K33, K33, K33, K15, K33, K33, K33, K33, K33),
strides=(S11, S11, S11, S11, S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=192,
expand_filters=(640, 512, 512, 640, 640, 640, 512, 512, 640, 768,
640, 640, 768),
kernel_sizes=(K53, K15, K15, K15, K15, K33, K15, K15, K15, K15, K15,
K33, K33),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11,
S11)),
HeadSpec(project_filters=856, head_filters=2048),
),
'a5': (
StemSpec(filters=24, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=24,
expand_filters=(64, 64, 96, 64, 96, 64),
kernel_sizes=(K15, K15, K33, K33, K33, K33),
strides=(S12, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=64,
expand_filters=(192, 152, 152, 152, 192, 192, 192, 152, 152, 192,
192),
kernel_sizes=(K53, K33, K33, K33, K33, K33, K33, K33, K33, K33,
K33),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=112,
expand_filters=(376, 224, 376, 376, 296, 376, 224, 376, 376, 296,
376, 376, 376),
kernel_sizes=(K53, K33, K33, K33, K33, K33, K33, K33, K33, K33, K33,
K33, K33),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11,
S11)),
MovinetBlockSpec(
base_filters=120,
expand_filters=(376, 376, 376, 376, 224, 376, 376, 224, 376, 376,
376),
kernel_sizes=(K53, K33, K33, K33, K15, K33, K33, K33, K33, K33,
K33),
strides=(S11, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=224,
expand_filters=(744, 744, 600, 600, 744, 744, 744, 896, 600, 600,
896, 744, 744, 896, 600, 600, 744, 744),
kernel_sizes=(K53, K33, K15, K15, K15, K15, K33, K15, K15, K15, K15,
K15, K33, K15, K15, K15, K15, K33),
strides=(S12, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11, S11,
S11, S11, S11, S11, S11, S11)),
HeadSpec(project_filters=992, head_filters=2048),
),
't0': (
StemSpec(filters=8, kernel_size=K13, strides=S12),
MovinetBlockSpec(
base_filters=8,
expand_filters=(16,),
kernel_sizes=(K15,),
strides=(S12,)),
MovinetBlockSpec(
base_filters=32,
expand_filters=(72, 72),
kernel_sizes=(K33, K15),
strides=(S12, S11)),
MovinetBlockSpec(
base_filters=56,
expand_filters=(112, 112, 112),
kernel_sizes=(K53, K15, K33),
strides=(S12, S11, S11)),
MovinetBlockSpec(
base_filters=56,
expand_filters=(184, 184, 184, 184),
kernel_sizes=(K53, K15, K33, K33),
strides=(S11, S11, S11, S11)),
MovinetBlockSpec(
base_filters=104,
expand_filters=(344, 344, 344, 344),
kernel_sizes=(K53, K15, K15, K33),
strides=(S12, S11, S11, S11)),
HeadSpec(project_filters=240, head_filters=1024),
),
}
@tf_keras.utils.register_keras_serializable(package='Vision')
class Movinet(tf_keras.Model):
"""Class to build Movinet family model.
Reference: https://arxiv.org/pdf/2103.11511.pdf
"""
def __init__(self,
model_id: str = 'a0',
causal: bool = False,
use_positional_encoding: bool = False,
conv_type: str = '3d',
se_type: str = '3d',
input_specs: Optional[tf_keras.layers.InputSpec] = None,
activation: str = 'swish',
gating_activation: str = 'sigmoid',
use_sync_bn: bool = True,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'HeNormal',
kernel_regularizer: Optional[str] = None,
bias_regularizer: Optional[str] = None,
stochastic_depth_drop_rate: float = 0.,
use_external_states: bool = False,
output_states: bool = True,
average_pooling_type: str = '3d',
**kwargs):
"""MoViNet initialization function.
Args:
model_id: name of MoViNet backbone model.
causal: use causal mode, with CausalConv and CausalSE operations.
use_positional_encoding: if True, adds a positional encoding before
temporal convolutions and the cumulative global average pooling
layers.
conv_type: '3d', '2plus1d', or '3d_2plus1d'. '3d' configures the network
to use the default 3D convolution. '2plus1d' uses (2+1)D convolution
with Conv2D operations and 2D reshaping (e.g., a 5x3x3 kernel becomes
3x3 followed by 5x1 conv). '3d_2plus1d' uses (2+1)D convolution with
Conv3D and no 2D reshaping (e.g., a 5x3x3 kernel becomes 1x3x3 followed
by 5x1x1 conv).
se_type: '3d', '2d', '2plus3d' or 'none'. '3d' uses the default 3D
spatiotemporal global average pooling for squeeze excitation. '2d'
uses 2D spatial global average pooling on each frame. '2plus3d'
concatenates both 3D and 2D global average pooling.
input_specs: the model input spec to use.
activation: name of the main activation function.
gating_activation: gating activation to use in squeeze excitation layers.
use_sync_bn: if True, use synchronized batch normalization.
norm_momentum: normalization momentum for the moving average.
norm_epsilon: small float added to variance to avoid dividing by
zero.
kernel_initializer: kernel_initializer for convolutional layers.
kernel_regularizer: tf_keras.regularizers.Regularizer object for Conv2D.
Defaults to None.
bias_regularizer: tf_keras.regularizers.Regularizer object for Conv2d.
Defaults to None.
stochastic_depth_drop_rate: the base rate for stochastic depth.
use_external_states: if True, expects states to be passed as additional
input.
output_states: if True, output intermediate states that can be used to run
the model in streaming mode. Inputting the output states of the
previous input clip with the current input clip will utilize a stream
buffer for streaming video.
average_pooling_type: The average pooling type. Currently supporting
['3d', '2d', 'none'].
**kwargs: keyword arguments to be passed.
"""
block_specs = BLOCK_SPECS[model_id]
if input_specs is None:
input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, None, 3])
if conv_type not in ('3d', '2plus1d', '3d_2plus1d'):
raise ValueError('Unknown conv type: {}'.format(conv_type))
if se_type not in ('3d', '2d', '2plus3d', 'none'):
raise ValueError('Unknown squeeze excitation type: {}'.format(se_type))
self._model_id = model_id
self._block_specs = block_specs
self._causal = causal
self._use_positional_encoding = use_positional_encoding
self._conv_type = conv_type
self._se_type = se_type
self._input_specs = input_specs
self._use_sync_bn = use_sync_bn
self._activation = activation
self._gating_activation = gating_activation
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._norm = tf_keras.layers.BatchNormalization
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
self._use_external_states = use_external_states
self._output_states = output_states
self._average_pooling_type = average_pooling_type
if self._use_external_states and not self._causal:
raise ValueError('External states should be used with causal mode.')
if not isinstance(block_specs[0], StemSpec):
raise ValueError(
'Expected first spec to be StemSpec, got {}'.format(block_specs[0]))
if not isinstance(block_specs[-1], HeadSpec):
raise ValueError(
'Expected final spec to be HeadSpec, got {}'.format(block_specs[-1]))
self._head_filters = block_specs[-1].head_filters
state_specs = None
if use_external_states:
self._set_dtype_policy(input_specs.dtype)
state_specs = self.initial_state_specs(input_specs.shape)
inputs, outputs = self._build_network(input_specs, state_specs=state_specs)
super(Movinet, self).__init__(inputs=inputs, outputs=outputs, **kwargs)
self._state_specs = state_specs
def _build_network(
self,
input_specs: tf_keras.layers.InputSpec,
state_specs: Optional[Mapping[str, tf_keras.layers.InputSpec]] = None,
) -> Tuple[TensorMap, Union[TensorMap, Tuple[TensorMap, TensorMap]]]:
"""Builds the model network.
Args:
input_specs: the model input spec to use.
state_specs: a dict mapping a state name to the corresponding state spec.
State names should match with the `state` input/output dict.
Returns:
Inputs and outputs as a tuple. Inputs are expected to be a dict with
base input and states. Outputs are expected to be a dict of endpoints
and (optional) output states.
"""
state_specs = state_specs if state_specs is not None else {}
image_input = tf_keras.Input(shape=input_specs.shape[1:], name='inputs')
states = {
name: tf_keras.Input(shape=spec.shape[1:], dtype=spec.dtype, name=name)
for name, spec in state_specs.items()
}
inputs = {**states, 'image': image_input}
endpoints = {}
x = image_input
num_layers = sum(
len(block.expand_filters)
for block in self._block_specs
if isinstance(block, MovinetBlockSpec))
stochastic_depth_idx = 1
for block_idx, block in enumerate(self._block_specs):
if isinstance(block, StemSpec):
layer_obj = movinet_layers.Stem(
block.filters,
block.kernel_size,
block.strides,
conv_type=self._conv_type,
causal=self._causal,
activation=self._activation,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
batch_norm_layer=self._norm,
batch_norm_momentum=self._norm_momentum,
batch_norm_epsilon=self._norm_epsilon,
use_sync_bn=self._use_sync_bn,
state_prefix='state_stem',
name='stem')
x, states = layer_obj(x, states=states)
endpoints['stem'] = x
elif isinstance(block, MovinetBlockSpec):
if not (len(block.expand_filters) == len(block.kernel_sizes) ==
len(block.strides)):
raise ValueError(
'Lengths of block parameters differ: {}, {}, {}'.format(
len(block.expand_filters),
len(block.kernel_sizes),
len(block.strides)))
params = list(zip(block.expand_filters,
block.kernel_sizes,
block.strides))
for layer_idx, layer in enumerate(params):
stochastic_depth_drop_rate = (
self._stochastic_depth_drop_rate * stochastic_depth_idx /
num_layers)
expand_filters, kernel_size, strides = layer
name = f'block{block_idx-1}_layer{layer_idx}'
layer_obj = movinet_layers.MovinetBlock(
block.base_filters,
expand_filters,
kernel_size=kernel_size,
strides=strides,
causal=self._causal,
activation=self._activation,
gating_activation=self._gating_activation,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
conv_type=self._conv_type,
se_type=self._se_type,
use_positional_encoding=
self._use_positional_encoding and self._causal,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
batch_norm_layer=self._norm,
batch_norm_momentum=self._norm_momentum,
batch_norm_epsilon=self._norm_epsilon,
use_sync_bn=self._use_sync_bn,
state_prefix=f'state_{name}',
name=name)
x, states = layer_obj(x, states=states)
endpoints[name] = x
stochastic_depth_idx += 1
elif isinstance(block, HeadSpec):
layer_obj = movinet_layers.Head(
project_filters=block.project_filters,
conv_type=self._conv_type,
activation=self._activation,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
batch_norm_layer=self._norm,
batch_norm_momentum=self._norm_momentum,
batch_norm_epsilon=self._norm_epsilon,
use_sync_bn=self._use_sync_bn,
average_pooling_type=self._average_pooling_type,
state_prefix='state_head',
name='head')
x, states = layer_obj(x, states=states)
endpoints['head'] = x
else:
raise ValueError('Unknown block type {}'.format(block))
outputs = (endpoints, states) if self._output_states else endpoints
return inputs, outputs
def _get_initial_state_shapes(
self,
block_specs: Sequence[BlockSpec],
input_shape: Union[Sequence[int], tf.Tensor],
use_positional_encoding: bool = False) -> Dict[str, Sequence[int]]:
"""Generates names and shapes for all input states.
Args:
block_specs: sequence of specs used for creating a model.
input_shape: the expected 5D shape of the image input.
use_positional_encoding: whether the model will use positional encoding.
Returns:
A dict mapping state names to state shapes.
"""
def divide_resolution(shape, num_downsamples):
"""Downsamples the dimension to calculate strided convolution shape."""
if shape is None:
return None
if isinstance(shape, tf.Tensor):
# Avoid using div and ceil to support tf lite
shape = tf.cast(shape, tf.float32)
resolution_divisor = 2 ** num_downsamples
resolution_multiplier = 0.5 ** num_downsamples
shape = ((shape + resolution_divisor - 1) * resolution_multiplier)
return tf.cast(shape, tf.int32)
else:
resolution_divisor = 2 ** num_downsamples
return math.ceil(shape / resolution_divisor)
states = {}
num_downsamples = 0
for block_idx, block in enumerate(block_specs):
if isinstance(block, StemSpec):
if block.kernel_size[0] > 1:
states['state_stem_stream_buffer'] = (
input_shape[0],
input_shape[1],
divide_resolution(input_shape[2], num_downsamples),
divide_resolution(input_shape[3], num_downsamples),
block.filters,
)
num_downsamples += 1
elif isinstance(block, MovinetBlockSpec):
block_idx -= 1
params = list(zip(
block.expand_filters,
block.kernel_sizes,
block.strides))
for layer_idx, layer in enumerate(params):
expand_filters, kernel_size, strides = layer
# If we use a 2D kernel, we apply spatial downsampling
# before the buffer.
if (tuple(strides[1:3]) != (1, 1) and
self._conv_type in ['2plus1d', '3d_2plus1d']):
num_downsamples += 1
prefix = f'state_block{block_idx}_layer{layer_idx}'
if kernel_size[0] > 1:
states[f'{prefix}_stream_buffer'] = (
input_shape[0],
kernel_size[0] - 1,
divide_resolution(input_shape[2], num_downsamples),
divide_resolution(input_shape[3], num_downsamples),
expand_filters,
)
if '3d' in self._se_type:
states[f'{prefix}_pool_buffer'] = (
input_shape[0], 1, 1, 1, expand_filters,
)
states[f'{prefix}_pool_frame_count'] = (1,)
if use_positional_encoding:
name = f'{prefix}_pos_enc_frame_count'
states[name] = (1,)
if strides[1] != strides[2]:
raise ValueError('Strides must match in the spatial dimensions, '
'got {}'.format(strides))
# If we use a 3D kernel, we apply spatial downsampling
# after the buffer.
if (tuple(strides[1:3]) != (1, 1) and
self._conv_type not in ['2plus1d', '3d_2plus1d']):
num_downsamples += 1
elif isinstance(block, HeadSpec):
states['state_head_pool_buffer'] = (
input_shape[0], 1, 1, 1, block.project_filters,
)
states['state_head_pool_frame_count'] = (1,)
return states
def _get_state_dtype(self, name: str) -> str:
"""Returns the dtype associated with a state."""
if 'frame_count' in name:
return 'int32'
return self.dtype
def initial_state_specs(
self, input_shape: Sequence[int]) -> Dict[str, tf_keras.layers.InputSpec]:
"""Creates a mapping of state name to InputSpec from the input shape."""
state_shapes = self._get_initial_state_shapes(
self._block_specs,
input_shape,
use_positional_encoding=self._use_positional_encoding)
return {
name: tf_keras.layers.InputSpec(
shape=shape, dtype=self._get_state_dtype(name))
for name, shape in state_shapes.items()
}
def init_states(self, input_shape: Sequence[int]) -> Dict[str, tf.Tensor]:
"""Returns initial states for the first call in steaming mode."""
state_shapes = self._get_initial_state_shapes(
self._block_specs,
input_shape,
use_positional_encoding=self._use_positional_encoding)
states = {
name: tf.zeros(shape, dtype=self._get_state_dtype(name))
for name, shape in state_shapes.items()
}
return states
@property
def use_external_states(self) -> bool:
"""Whether this model is expecting input states as additional input."""
return self._use_external_states
@property
def head_filters(self):
"""The number of filters expected to be in the head classifer layer."""
return self._head_filters
@property
def conv_type(self):
"""The expected convolution type (see __init__ for more details)."""
return self._conv_type
def get_config(self):
config_dict = {
'model_id': self._model_id,
'causal': self._causal,
'use_positional_encoding': self._use_positional_encoding,
'conv_type': self._conv_type,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
'use_external_states': self._use_external_states,
'output_states': self._output_states,
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@factory.register_backbone_builder('movinet')
def build_movinet(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras
"""Builds MoViNet backbone from a config."""
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
if backbone_type != 'movinet':
raise ValueError(f'Inconsistent backbone type {backbone_type}')
if norm_activation_config.activation is not None:
logging.warn('norm_activation is not used in MoViNets, but specified: '
'%s', norm_activation_config.activation)
logging.warn('norm_activation is ignored.')
return Movinet(
model_id=backbone_cfg.model_id,
causal=backbone_cfg.causal,
use_positional_encoding=backbone_cfg.use_positional_encoding,
conv_type=backbone_cfg.conv_type,
se_type=backbone_cfg.se_type,
input_specs=input_specs,
activation=backbone_cfg.activation,
gating_activation=backbone_cfg.gating_activation,
output_states=backbone_cfg.output_states,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer,
stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
use_external_states=backbone_cfg.use_external_states,
average_pooling_type=backbone_cfg.average_pooling_type)
|