Spaces:
Sleeping
Sleeping
File size: 7,873 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for movinet.py."""
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.projects.movinet.modeling import movinet
class MoViNetTest(parameterized.TestCase, tf.test.TestCase):
def test_network_creation(self):
"""Test creation of MoViNet family models."""
tf_keras.backend.set_image_data_format('channels_last')
network = movinet.Movinet(
model_id='a0',
causal=True,
)
inputs = tf_keras.Input(shape=(8, 128, 128, 3), batch_size=1)
endpoints, states = network(inputs)
self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])
self.assertNotEmpty(states)
def test_network_with_states(self):
"""Test creation of MoViNet family models with states."""
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
use_external_states=True,
)
inputs = tf.ones([1, 8, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
endpoints, new_states = backbone({**init_states, 'image': inputs})
self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])
self.assertNotEmpty(init_states)
self.assertNotEmpty(new_states)
def test_movinet_stream(self):
"""Test if the backbone can be run in streaming mode."""
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
use_external_states=True,
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
def test_movinet_stream_nse(self):
"""Test if the backbone can be run in streaming mode w/o SE layer."""
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
use_external_states=True,
se_type='none',
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
# Check contents in the states dictionary.
state_keys = list(init_states.keys())
self.assertIn('state_head_pool_buffer', state_keys)
self.assertIn('state_head_pool_frame_count', state_keys)
state_keys.remove('state_head_pool_buffer')
state_keys.remove('state_head_pool_frame_count')
# From now on, there are only 'stream_buffer' for the convolutions.
for state_key in state_keys:
self.assertIn(
'stream_buffer', state_key,
msg=f'Expecting stream_buffer only, found {state_key}')
def test_movinet_2plus1d_stream(self):
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
conv_type='2plus1d',
use_external_states=True,
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
def test_movinet_3d_2plus1d_stream(self):
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
conv_type='3d_2plus1d',
use_external_states=True,
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
model_id='a0',
causal=True,
use_positional_encoding=True,
use_external_states=True,
)
network = movinet.Movinet(**kwargs)
# Create another network object from the first object's config.
new_network = movinet.Movinet.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()
|