Spaces:
Sleeping
Sleeping
File size: 11,704 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Exports models to tf.saved_model.
Export example:
```shell
python3 export_saved_model.py \
--export_path=/tmp/movinet/ \
--model_id=a0 \
--causal=True \
--conv_type="3d" \
--num_classes=600 \
--use_positional_encoding=False \
--checkpoint_path=""
```
Export for TF Lite example:
```shell
python3 export_saved_model.py \
--model_id=a0 \
--causal=True \
--conv_type=2plus1d \
--se_type=2plus3d \
--activation=hard_swish \
--gating_activation=hard_sigmoid \
--use_positional_encoding=False \
--num_classes=600 \
--batch_size=1 \
--num_frames=1 \ # Use a single frame for streaming mode
--image_size=172 \ # Input resolution for the model
--bundle_input_init_states_fn=False \
--checkpoint_path=/path/to/checkpoint \
--export_path=/tmp/movinet_a0_stream
```
To use an exported saved_model, refer to export_saved_model_test.py.
"""
from typing import Optional, Tuple
from absl import app
from absl import flags
import tensorflow as tf, tf_keras
from official.projects.movinet.modeling import movinet
from official.projects.movinet.modeling import movinet_model
flags.DEFINE_string(
'export_path', '/tmp/movinet/',
'Export path to save the saved_model file.')
flags.DEFINE_string(
'model_id', 'a0', 'MoViNet model name.')
flags.DEFINE_bool(
'causal', False, 'Run the model in causal mode.')
flags.DEFINE_string(
'conv_type', '3d',
'3d, 2plus1d, or 3d_2plus1d. 3d configures the network '
'to use the default 3D convolution. 2plus1d uses (2+1)D convolution '
'with Conv2D operations and 2D reshaping (e.g., a 5x3x3 kernel becomes '
'3x3 followed by 5x1 conv). 3d_2plus1d uses (2+1)D convolution with '
'Conv3D and no 2D reshaping (e.g., a 5x3x3 kernel becomes 1x3x3 '
'followed by 5x1x1 conv).')
flags.DEFINE_string(
'se_type', '3d',
'3d, 2d, or 2plus3d. 3d uses the default 3D spatiotemporal global average'
'pooling for squeeze excitation. 2d uses 2D spatial global average pooling '
'on each frame. 2plus3d concatenates both 3D and 2D global average '
'pooling.')
flags.DEFINE_string(
'activation', 'swish',
'The main activation to use across layers.')
flags.DEFINE_string(
'classifier_activation', 'swish',
'The classifier activation to use.')
flags.DEFINE_string(
'gating_activation', 'sigmoid',
'The gating activation to use in squeeze-excitation layers.')
flags.DEFINE_bool(
'use_positional_encoding', False,
'Whether to use positional encoding (only applied when causal=True).')
flags.DEFINE_integer(
'num_classes', 600, 'The number of classes for prediction.')
flags.DEFINE_integer(
'batch_size', None,
'The batch size of the input. Set to None for dynamic input.')
flags.DEFINE_integer(
'num_frames', None,
'The number of frames of the input. Set to None for dynamic input.')
flags.DEFINE_integer(
'image_size', None,
'The resolution of the input. Set to None for dynamic input.')
flags.DEFINE_bool(
'bundle_input_init_states_fn', True,
'Add init_states as a function signature to the saved model.'
'This is not necessary if the input shape is static (e.g., for TF Lite).')
flags.DEFINE_string(
'checkpoint_path', '',
'Checkpoint path to load. Leave blank for default initialization.')
flags.DEFINE_bool(
'assert_checkpoint_objects_matched',
True,
'Whether to check the checkpoint objects exactly match those of the model.',
)
FLAGS = flags.FLAGS
def export_saved_model(
model: tf_keras.Model,
input_shape: Tuple[int, int, int, int, int],
export_path: str = '/tmp/movinet/',
causal: bool = False,
bundle_input_init_states_fn: bool = True,
checkpoint_path: Optional[str] = None,
assert_checkpoint_objects_matched: bool = True,
) -> None:
"""Exports a MoViNet model to a saved model.
Args:
model: the tf_keras.Model to export.
input_shape: The 5D spatiotemporal input shape of size [batch_size,
num_frames, image_height, image_width, num_channels]. Set the field or a
shape position in the field to None for dynamic input.
export_path: Export path to save the saved_model file.
causal: Run the model in causal mode.
bundle_input_init_states_fn: Add init_states as a function signature to the
saved model. This is not necessary if the input shape is static (e.g., for
TF Lite).
checkpoint_path: Checkpoint path to load. Leave blank to keep the model's
initialization.
assert_checkpoint_objects_matched: Whether to check the checkpoint objects
exactly match those of the model.
"""
# Use dimensions of 1 except the channels to export faster,
# since we only really need the last dimension to build and get the output
# states. These dimensions can be set to `None` once the model is built.
input_shape_concrete = [1 if s is None else s for s in input_shape]
model.build(input_shape_concrete)
# Compile model to generate some internal Keras variables.
model.compile()
if checkpoint_path:
checkpoint = tf.train.Checkpoint(model=model)
status = checkpoint.restore(checkpoint_path)
if assert_checkpoint_objects_matched:
status.assert_existing_objects_matched()
if causal:
# Call the model once to get the output states. Call again with `states`
# input to ensure that the inputs with the `states` argument is built
# with the full output state shapes.
input_image = tf.ones(input_shape_concrete)
_, states = model({
**model.init_states(input_shape_concrete), 'image': input_image})
_ = model({**states, 'image': input_image})
# Create a function to explicitly set the names of the outputs
def predict(inputs):
outputs, states = model(inputs)
return {**states, 'logits': outputs}
specs = {
name: tf.TensorSpec(spec.shape, name=name, dtype=spec.dtype)
for name, spec in model.initial_state_specs(
input_shape).items()
}
specs['image'] = tf.TensorSpec(
input_shape, dtype=model.dtype, name='image')
predict_fn = tf.function(predict, jit_compile=True)
predict_fn = predict_fn.get_concrete_function(specs)
init_states_fn = tf.function(model.init_states, jit_compile=True)
init_states_fn = init_states_fn.get_concrete_function(
tf.TensorSpec([5], dtype=tf.int32))
if bundle_input_init_states_fn:
signatures = {'call': predict_fn, 'init_states': init_states_fn}
else:
signatures = predict_fn
tf_keras.models.save_model(
model, export_path, signatures=signatures)
else:
_ = model(tf.ones(input_shape_concrete))
tf_keras.models.save_model(model, export_path)
def build_and_export_saved_model(
export_path: str = '/tmp/movinet/',
model_id: str = 'a0',
causal: bool = False,
conv_type: str = '3d',
se_type: str = '3d',
activation: str = 'swish',
classifier_activation: str = 'swish',
gating_activation: str = 'sigmoid',
use_positional_encoding: bool = False,
num_classes: int = 600,
input_shape: Optional[Tuple[int, int, int, int, int]] = None,
bundle_input_init_states_fn: bool = True,
checkpoint_path: Optional[str] = None,
assert_checkpoint_objects_matched: bool = True,
) -> None:
"""Builds and exports a MoViNet model to a saved model.
Args:
export_path: Export path to save the saved_model file.
model_id: MoViNet model name.
causal: Run the model in causal mode.
conv_type: 3d, 2plus1d, or 3d_2plus1d. 3d configures the network to use the
default 3D convolution. 2plus1d uses (2+1)D convolution with Conv2D
operations and 2D reshaping (e.g., a 5x3x3 kernel becomes 3x3 followed by
5x1 conv). 3d_2plus1d uses (2+1)D convolution with Conv3D and no 2D
reshaping (e.g., a 5x3x3 kernel becomes 1x3x3 followed by 5x1x1 conv).
se_type: 3d, 2d, or 2plus3d. 3d uses the default 3D spatiotemporal global
average pooling for squeeze excitation. 2d uses 2D spatial global average
pooling on each frame. 2plus3d concatenates both 3D and 2D global average
pooling.
activation: The main activation to use across layers.
classifier_activation: The classifier activation to use.
gating_activation: The gating activation to use in squeeze-excitation
layers.
use_positional_encoding: Whether to use positional encoding (only applied
when causal=True).
num_classes: The number of classes for prediction.
input_shape: The 5D spatiotemporal input shape of size [batch_size,
num_frames, image_height, image_width, num_channels]. Set the field or a
shape position in the field to None for dynamic input.
bundle_input_init_states_fn: Add init_states as a function signature to the
saved model. This is not necessary if the input shape is static (e.g., for
TF Lite).
checkpoint_path: Checkpoint path to load. Leave blank for default
initialization.
assert_checkpoint_objects_matched: Whether to check the checkpoint objects
exactly match those of the model.
"""
input_specs = tf_keras.layers.InputSpec(shape=input_shape)
# Override swish activation implementation to remove custom gradients
if activation == 'swish':
activation = 'simple_swish'
if classifier_activation == 'swish':
classifier_activation = 'simple_swish'
backbone = movinet.Movinet(
model_id=model_id,
causal=causal,
use_positional_encoding=use_positional_encoding,
conv_type=conv_type,
se_type=se_type,
input_specs=input_specs,
activation=activation,
gating_activation=gating_activation,
use_sync_bn=False,
use_external_states=causal)
model = movinet_model.MovinetClassifier(
backbone,
num_classes=num_classes,
output_states=causal,
input_specs=dict(image=input_specs),
activation=classifier_activation)
export_saved_model(
model=model,
input_shape=input_shape,
export_path=export_path,
causal=causal,
bundle_input_init_states_fn=bundle_input_init_states_fn,
checkpoint_path=checkpoint_path,
assert_checkpoint_objects_matched=assert_checkpoint_objects_matched,
)
def main(_) -> None:
input_shape = (
FLAGS.batch_size, FLAGS.num_frames, FLAGS.image_size, FLAGS.image_size, 3)
build_and_export_saved_model(
export_path=FLAGS.export_path,
model_id=FLAGS.model_id,
causal=FLAGS.causal,
conv_type=FLAGS.conv_type,
se_type=FLAGS.se_type,
activation=FLAGS.activation,
classifier_activation=FLAGS.classifier_activation,
gating_activation=FLAGS.gating_activation,
use_positional_encoding=FLAGS.use_positional_encoding,
num_classes=FLAGS.num_classes,
input_shape=input_shape,
bundle_input_init_states_fn=FLAGS.bundle_input_init_states_fn,
checkpoint_path=FLAGS.checkpoint_path,
assert_checkpoint_objects_matched=FLAGS.assert_checkpoint_objects_matched,
)
print(' ----- Done. Saved Model is saved at {}'.format(FLAGS.export_path))
if __name__ == '__main__':
app.run(main)
|