File size: 16,847 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing for Mask R-CNN."""

from typing import Optional

# Import libraries
import tensorflow as tf, tf_keras

from official.vision.configs import common
from official.vision.dataloaders import parser
from official.vision.dataloaders import utils
from official.vision.ops import anchor
from official.vision.ops import augment
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               rpn_match_threshold=0.7,
               rpn_unmatched_threshold=0.3,
               rpn_batch_size_per_im=256,
               rpn_fg_fraction=0.5,
               aug_rand_hflip=False,
               aug_rand_vflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               aug_type: Optional[common.Augmentation] = None,
               skip_crowd_during_training=True,
               max_num_instances=100,
               include_mask=False,
               outer_boxes_scale=1.0,
               mask_crop_size=112,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect ratio
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      rpn_match_threshold:
      rpn_unmatched_threshold:
      rpn_batch_size_per_im:
      rpn_fg_fraction:
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
      aug_rand_vflip: `bool`, if True, augment training with random vertical
        flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      aug_type: An optional Augmentation object with params for AutoAugment.
        The AutoAug policy should not use rotation/translation/shear.
        Only in-place augmentations can be used.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The ground-truth data will be padded to `max_num_instances`.
      include_mask: a bool to indicate whether parse mask ground-truth.
      outer_boxes_scale: a float to scale up the bounding boxes to generate
        more inclusive masks. The scale is expected to be >=1.0.
      mask_crop_size: the size which ground-truth mask is cropped to.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
    """

    self._max_num_instances = max_num_instances
    self._skip_crowd_during_training = skip_crowd_during_training

    # Anchor.
    self._output_size = output_size
    self._min_level = min_level
    self._max_level = max_level
    self._num_scales = num_scales
    self._aspect_ratios = aspect_ratios
    self._anchor_size = anchor_size

    # Target assigning.
    self._rpn_match_threshold = rpn_match_threshold
    self._rpn_unmatched_threshold = rpn_unmatched_threshold
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._rpn_fg_fraction = rpn_fg_fraction

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_rand_vflip = aug_rand_vflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    if aug_type and aug_type.type:
      if aug_type.type == 'autoaug':
        self._augmenter = augment.AutoAugment(
            augmentation_name=aug_type.autoaug.augmentation_name,
            cutout_const=aug_type.autoaug.cutout_const,
            translate_const=aug_type.autoaug.translate_const)
      elif aug_type.type == 'randaug':
        self._augmenter = augment.RandAugment(
            num_layers=aug_type.randaug.num_layers,
            magnitude=aug_type.randaug.magnitude,
            cutout_const=aug_type.randaug.cutout_const,
            translate_const=aug_type.randaug.translate_const,
            prob_to_apply=aug_type.randaug.prob_to_apply,
            exclude_ops=aug_type.randaug.exclude_ops)
      else:
        raise ValueError('Augmentation policy {} not supported.'.format(
            aug_type.type))
    else:
      self._augmenter = None

    # Mask.
    self._include_mask = include_mask
    self._outer_boxes_scale = outer_boxes_scale
    self._mask_crop_size = mask_crop_size

    # Image output dtype.
    self._dtype = dtype

  def _parse_train_data(self, data):
    """Parses data for training.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      image: image tensor that is preproessed to have normalized value and
        dimension [output_size[0], output_size[1], 3]
      labels: a dictionary of tensors used for training. The following describes
        {key: value} pairs in the dictionary.
        image_info: a 2D `Tensor` that encodes the information of the image and
          the applied preprocessing. It is in the format of
          [[original_height, original_width], [scaled_height, scaled_width],
        anchor_boxes: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, 4] representing anchor boxes at each level.
        rpn_score_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location]. The height_l and
          width_l represent the dimension of class logits at l-th level.
        rpn_box_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location * 4]. The height_l and
          width_l represent the dimension of bounding box regression output at
          l-th level.
        gt_boxes: Ground-truth bounding box annotations. The box is represented
           in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
           image that is fed to the network. The tennsor is padded with -1 to
           the fixed dimension [self._max_num_instances, 4].
        gt_classes: Ground-truth classes annotations. The tennsor is padded
          with -1 to the fixed dimension [self._max_num_instances].
        gt_masks: groundtrugh masks cropped by the bounding box and
          resized to a fixed size determined by mask_crop_size.
    """
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    if self._include_mask:
      masks = data['groundtruth_instance_masks']

    is_crowds = data['groundtruth_is_crowd']
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training:
      num_groundtruths = tf.shape(classes)[0]
      with tf.control_dependencies([num_groundtruths, is_crowds]):
        indices = tf.cond(
            tf.greater(tf.size(is_crowds), 0),
            lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
      if self._include_mask:
        masks = tf.gather(masks, indices)

    # Gets original image and its size.
    image = data['image']
    if self._augmenter is not None:
      image = self._augmenter.distort(image)

    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Flips image randomly during training.
    image, boxes, masks = preprocess_ops.random_horizontal_flip(
        image,
        boxes,
        masks=None if not self._include_mask else masks,
        prob=tf.where(self._aug_rand_hflip, 0.5, 0.0),
    )
    image, boxes, masks = preprocess_ops.random_vertical_flip(
        image,
        boxes,
        masks=None if not self._include_mask else masks,
        prob=tf.where(self._aug_rand_vflip, 0.5, 0.0),
    )

    # Converts boxes from normalized coordinates to pixel coordinates.
    # Now the coordinates of boxes are w.r.t. the original image.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    # Now the coordinates of boxes are w.r.t the scaled image.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(
        boxes, image_scale, image_info[1, :], offset)

    # Filters out ground-truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    if self._include_mask:
      outer_boxes = box_ops.compute_outer_boxes(boxes, image_info[1, :],
                                                self._outer_boxes_scale)
      masks = tf.gather(masks, indices)
      # Transfer boxes to the original image space and do normalization.
      cropped_boxes = outer_boxes + tf.tile(
          tf.expand_dims(offset, axis=0), [1, 2])
      cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
      cropped_boxes = box_ops.normalize_boxes(cropped_boxes, image_shape)
      num_masks = tf.shape(masks)[0]
      masks = tf.image.crop_and_resize(
          tf.expand_dims(masks, axis=-1),
          cropped_boxes,
          box_indices=tf.range(num_masks, dtype=tf.int32),
          crop_size=[self._mask_crop_size, self._mask_crop_size],
          method='bilinear')
      masks = tf.squeeze(masks, axis=-1)

    # Assigns anchor targets.
    # Note that after the target assignment, box targets are absolute pixel
    # offsets w.r.t. the scaled image.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.RpnAnchorLabeler(
        self._rpn_match_threshold,
        self._rpn_unmatched_threshold,
        self._rpn_batch_size_per_im,
        self._rpn_fg_fraction)
    rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
        anchor_boxes, boxes,
        tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))

    # Casts input image to self._dtype
    image = tf.cast(image, dtype=self._dtype)
    boxes = preprocess_ops.clip_or_pad_to_fixed_size(
        boxes, self._max_num_instances, -1)
    classes = preprocess_ops.clip_or_pad_to_fixed_size(
        classes, self._max_num_instances, -1)

    # Packs labels for model_fn outputs.
    labels = {
        'anchor_boxes': anchor_boxes,
        'image_info': image_info,
        'rpn_score_targets': rpn_score_targets,
        'rpn_box_targets': rpn_box_targets,
        'gt_boxes': boxes,
        'gt_classes': classes,
    }
    if self._include_mask:
      outer_boxes = preprocess_ops.clip_or_pad_to_fixed_size(
          outer_boxes, self._max_num_instances, -1)
      masks = preprocess_ops.clip_or_pad_to_fixed_size(
          masks, self._max_num_instances, -1)
      labels.update({
          'gt_outer_boxes': outer_boxes,
          'gt_masks': masks,
      })

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for evaluation.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      A dictionary of {'images': image, 'labels': labels} where
        image: image tensor that is preproessed to have normalized value and
          dimension [output_size[0], output_size[1], 3]
        labels: a dictionary of tensors used for training. The following
          describes {key: value} pairs in the dictionary.
          source_ids: Source image id. Default value -1 if the source id is
            empty in the ground-truth annotation.
          image_info: a 2D `Tensor` that encodes the information of the image
            and the applied preprocessing. It is in the format of
            [[original_height, original_width], [scaled_height, scaled_width],
          anchor_boxes: ordered dictionary with keys
            [min_level, min_level+1, ..., max_level]. The values are tensor with
            shape [height_l, width_l, 4] representing anchor boxes at each
            level.
    """
    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    image_height, image_width, _ = image.get_shape().as_list()

    # Casts input image to self._dtype
    image = tf.cast(image, dtype=self._dtype)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(data['groundtruth_boxes'], image_shape)

    # Compute Anchor boxes.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))

    labels = {
        'image_info': image_info,
        'anchor_boxes': anchor_boxes,
    }

    groundtruths = {
        'source_id': data['source_id'],
        'height': data['height'],
        'width': data['width'],
        'num_detections': tf.shape(data['groundtruth_classes'])[0],
        'boxes': boxes,
        'classes': data['groundtruth_classes'],
        'areas': data['groundtruth_area'],
        'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
    }
    groundtruths['source_id'] = utils.process_source_id(
        groundtruths['source_id'])
    groundtruths = utils.pad_groundtruths_to_fixed_size(
        groundtruths, self._max_num_instances)
    if self._include_mask:
      masks = data['groundtruth_instance_masks']
      masks = tf.image.crop_and_resize(
          tf.expand_dims(masks, axis=-1),
          boxes=data['groundtruth_boxes'],
          box_indices=tf.range(tf.shape(masks)[0], dtype=tf.int32),
          crop_size=[self._mask_crop_size, self._mask_crop_size],
          method='bilinear',
      )
      masks = tf.squeeze(masks, axis=-1)
      groundtruths['masks'] = preprocess_ops.clip_or_pad_to_fixed_size(
          masks, self._max_num_instances, -1
      )

    labels['groundtruths'] = groundtruths
    return image, labels