File size: 16,384 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of ResNet and ResNet-RS models."""

from typing import Callable, Optional

# Import libraries
import tensorflow as tf, tf_keras

from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers

layers = tf_keras.layers

# Specifications for different ResNet variants.
# Each entry specifies block configurations of the particular ResNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
RESNET_SPECS = {
    10: [
        ('residual', 64, 1),
        ('residual', 128, 1),
        ('residual', 256, 1),
        ('residual', 512, 1),
    ],
    18: [
        ('residual', 64, 2),
        ('residual', 128, 2),
        ('residual', 256, 2),
        ('residual', 512, 2),
    ],
    26: [
        ('residual', 64, 3),
        ('residual', 128, 3),
        ('residual', 256, 3),
        ('residual', 512, 3),
    ],
    34: [
        ('residual', 64, 3),
        ('residual', 128, 4),
        ('residual', 256, 6),
        ('residual', 512, 3),
    ],
    50: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 6),
        ('bottleneck', 512, 3),
    ],
    101: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 23),
        ('bottleneck', 512, 3),
    ],
    152: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 8),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
    200: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 24),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
    270: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 29),
        ('bottleneck', 256, 53),
        ('bottleneck', 512, 4),
    ],
    350: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 36),
        ('bottleneck', 256, 72),
        ('bottleneck', 512, 4),
    ],
    420: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 44),
        ('bottleneck', 256, 87),
        ('bottleneck', 512, 4),
    ],
}


@tf_keras.utils.register_keras_serializable(package='Vision')
class ResNet(tf_keras.Model):
  """Creates ResNet and ResNet-RS family models.

  This implements the Deep Residual Network from:
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
    Deep Residual Learning for Image Recognition.
    (https://arxiv.org/pdf/1512.03385) and
    Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
    Tsung-Yi Lin, Jonathon Shlens, Barret Zoph.
    Revisiting ResNets: Improved Training and Scaling Strategies.
    (https://arxiv.org/abs/2103.07579).
  """

  def __init__(
      self,
      model_id: int,
      input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      depth_multiplier: float = 1.0,
      stem_type: str = 'v0',
      resnetd_shortcut: bool = False,
      replace_stem_max_pool: bool = False,
      se_ratio: Optional[float] = None,
      init_stochastic_depth_rate: float = 0.0,
      scale_stem: bool = True,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bn_trainable: bool = True,
      **kwargs):
    """Initializes a ResNet model.

    Args:
      model_id: An `int` of the depth of ResNet backbone model.
      input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
      depth_multiplier: A `float` of the depth multiplier to uniformaly scale up
        all layers in channel size. This argument is also referred to as
        `width_multiplier` in (https://arxiv.org/abs/2103.07579).
      stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
        `v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
      resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
        downsampling blocks.
      replace_stem_max_pool: A `bool` of whether to replace the max pool in stem
        with a stride-2 conv,
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      scale_stem: A `bool` of whether to scale stem layers.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A small `float` added to variance to avoid dividing by zero.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      bn_trainable: A `bool` that indicates whether batch norm layers should be
        trainable. Default to True.
      **kwargs: Additional keyword arguments to be passed.
    """
    self._model_id = model_id
    self._input_specs = input_specs
    self._depth_multiplier = depth_multiplier
    self._stem_type = stem_type
    self._resnetd_shortcut = resnetd_shortcut
    self._replace_stem_max_pool = replace_stem_max_pool
    self._se_ratio = se_ratio
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
    self._scale_stem = scale_stem
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._norm = layers.BatchNormalization
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._bn_trainable = bn_trainable

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1

    # Build ResNet.
    inputs = tf_keras.Input(shape=input_specs.shape[1:])
    x = self._stem(inputs)

    endpoints = {}
    for i, spec in enumerate(RESNET_SPECS[model_id]):
      if spec[0] == 'residual':
        block_fn = nn_blocks.ResidualBlock
      elif spec[0] == 'bottleneck':
        block_fn = nn_blocks.BottleneckBlock
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
      x = self._block_group(
          inputs=x,
          filters=int(spec[1] * self._depth_multiplier),
          strides=(1 if i == 0 else 2),
          block_fn=block_fn,
          block_repeats=spec[2],
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 2, 5),
          name='block_group_l{}'.format(i + 2))
      endpoints[str(i + 2)] = x

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(ResNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)

  def _stem(self, inputs):
    stem_depth_multiplier = self._depth_multiplier if self._scale_stem else 1.0
    if self._stem_type == 'v0':
      x = layers.Conv2D(
          filters=int(64 * stem_depth_multiplier),
          kernel_size=7,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
      )(inputs)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )(x)
      x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
    elif self._stem_type == 'v1':
      x = layers.Conv2D(
          filters=int(32 * stem_depth_multiplier),
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
      )(inputs)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )(x)
      x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
      x = layers.Conv2D(
          filters=int(32 * stem_depth_multiplier),
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
      )(x)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )(x)
      x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
      x = layers.Conv2D(
          filters=int(64 * stem_depth_multiplier),
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
      )(x)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )(x)
      x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
    else:
      raise ValueError('Stem type {} not supported.'.format(self._stem_type))

    if self._replace_stem_max_pool:
      x = layers.Conv2D(
          filters=int(64 * self._depth_multiplier),
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
      )(x)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )(x)
      x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
    else:
      x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

    return x

  def _block_group(self,
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   block_fn: Callable[..., tf_keras.layers.Layer],
                   block_repeats: int = 1,
                   stochastic_depth_drop_rate: float = 0.0,
                   name: str = 'block_group'):
    """Creates one group of blocks for the ResNet model.

    Args:
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      filters: An `int` number of filters for the first convolution of the
        layer.
      strides: An `int` stride to use for the first convolution of the layer.
        If greater than 1, this layer will downsample the input.
      block_fn: The type of block group. Either `nn_blocks.ResidualBlock` or
        `nn_blocks.BottleneckBlock`.
      block_repeats: An `int` number of blocks contained in the layer.
      stochastic_depth_drop_rate: A `float` of drop rate of the current block
        group.
      name: A `str` name for the block.

    Returns:
      The output `tf.Tensor` of the block layer.
    """
    x = block_fn(
        filters=filters,
        strides=strides,
        use_projection=True,
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
        se_ratio=self._se_ratio,
        resnetd_shortcut=self._resnetd_shortcut,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon,
        bn_trainable=self._bn_trainable)(
            inputs)

    for _ in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          use_projection=False,
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
          se_ratio=self._se_ratio,
          resnetd_shortcut=self._resnetd_shortcut,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon,
          bn_trainable=self._bn_trainable)(
              x)

    return tf_keras.layers.Activation('linear', name=name)(x)

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
        'depth_multiplier': self._depth_multiplier,
        'stem_type': self._stem_type,
        'resnetd_shortcut': self._resnetd_shortcut,
        'replace_stem_max_pool': self._replace_stem_max_pool,
        'activation': self._activation,
        'se_ratio': self._se_ratio,
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
        'scale_stem': self._scale_stem,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'bn_trainable': self._bn_trainable
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_backbone_builder('resnet')
def build_resnet(
    input_specs: tf_keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model:  # pytype: disable=annotation-type-mismatch  # typed-keras
  """Builds ResNet backbone from a config."""
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'resnet', (f'Inconsistent backbone type '
                                     f'{backbone_type}')

  return ResNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
      depth_multiplier=backbone_cfg.depth_multiplier,
      stem_type=backbone_cfg.stem_type,
      resnetd_shortcut=backbone_cfg.resnetd_shortcut,
      replace_stem_max_pool=backbone_cfg.replace_stem_max_pool,
      se_ratio=backbone_cfg.se_ratio,
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
      scale_stem=backbone_cfg.scale_stem,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer,
      bn_trainable=backbone_cfg.bn_trainable)