Spaces:
Sleeping
Sleeping
File size: 16,384 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of ResNet and ResNet-RS models."""
from typing import Callable, Optional
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
layers = tf_keras.layers
# Specifications for different ResNet variants.
# Each entry specifies block configurations of the particular ResNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
RESNET_SPECS = {
10: [
('residual', 64, 1),
('residual', 128, 1),
('residual', 256, 1),
('residual', 512, 1),
],
18: [
('residual', 64, 2),
('residual', 128, 2),
('residual', 256, 2),
('residual', 512, 2),
],
26: [
('residual', 64, 3),
('residual', 128, 3),
('residual', 256, 3),
('residual', 512, 3),
],
34: [
('residual', 64, 3),
('residual', 128, 4),
('residual', 256, 6),
('residual', 512, 3),
],
50: [
('bottleneck', 64, 3),
('bottleneck', 128, 4),
('bottleneck', 256, 6),
('bottleneck', 512, 3),
],
101: [
('bottleneck', 64, 3),
('bottleneck', 128, 4),
('bottleneck', 256, 23),
('bottleneck', 512, 3),
],
152: [
('bottleneck', 64, 3),
('bottleneck', 128, 8),
('bottleneck', 256, 36),
('bottleneck', 512, 3),
],
200: [
('bottleneck', 64, 3),
('bottleneck', 128, 24),
('bottleneck', 256, 36),
('bottleneck', 512, 3),
],
270: [
('bottleneck', 64, 4),
('bottleneck', 128, 29),
('bottleneck', 256, 53),
('bottleneck', 512, 4),
],
350: [
('bottleneck', 64, 4),
('bottleneck', 128, 36),
('bottleneck', 256, 72),
('bottleneck', 512, 4),
],
420: [
('bottleneck', 64, 4),
('bottleneck', 128, 44),
('bottleneck', 256, 87),
('bottleneck', 512, 4),
],
}
@tf_keras.utils.register_keras_serializable(package='Vision')
class ResNet(tf_keras.Model):
"""Creates ResNet and ResNet-RS family models.
This implements the Deep Residual Network from:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
Deep Residual Learning for Image Recognition.
(https://arxiv.org/pdf/1512.03385) and
Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
Tsung-Yi Lin, Jonathon Shlens, Barret Zoph.
Revisiting ResNets: Improved Training and Scaling Strategies.
(https://arxiv.org/abs/2103.07579).
"""
def __init__(
self,
model_id: int,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, 3]),
depth_multiplier: float = 1.0,
stem_type: str = 'v0',
resnetd_shortcut: bool = False,
replace_stem_max_pool: bool = False,
se_ratio: Optional[float] = None,
init_stochastic_depth_rate: float = 0.0,
scale_stem: bool = True,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bn_trainable: bool = True,
**kwargs):
"""Initializes a ResNet model.
Args:
model_id: An `int` of the depth of ResNet backbone model.
input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
depth_multiplier: A `float` of the depth multiplier to uniformaly scale up
all layers in channel size. This argument is also referred to as
`width_multiplier` in (https://arxiv.org/abs/2103.07579).
stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
`v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
downsampling blocks.
replace_stem_max_pool: A `bool` of whether to replace the max pool in stem
with a stride-2 conv,
se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
scale_stem: A `bool` of whether to scale stem layers.
activation: A `str` name of the activation function.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A small `float` added to variance to avoid dividing by zero.
kernel_initializer: A str for kernel initializer of convolutional layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
bn_trainable: A `bool` that indicates whether batch norm layers should be
trainable. Default to True.
**kwargs: Additional keyword arguments to be passed.
"""
self._model_id = model_id
self._input_specs = input_specs
self._depth_multiplier = depth_multiplier
self._stem_type = stem_type
self._resnetd_shortcut = resnetd_shortcut
self._replace_stem_max_pool = replace_stem_max_pool
self._se_ratio = se_ratio
self._init_stochastic_depth_rate = init_stochastic_depth_rate
self._scale_stem = scale_stem
self._use_sync_bn = use_sync_bn
self._activation = activation
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._norm = layers.BatchNormalization
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._bn_trainable = bn_trainable
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
# Build ResNet.
inputs = tf_keras.Input(shape=input_specs.shape[1:])
x = self._stem(inputs)
endpoints = {}
for i, spec in enumerate(RESNET_SPECS[model_id]):
if spec[0] == 'residual':
block_fn = nn_blocks.ResidualBlock
elif spec[0] == 'bottleneck':
block_fn = nn_blocks.BottleneckBlock
else:
raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
x = self._block_group(
inputs=x,
filters=int(spec[1] * self._depth_multiplier),
strides=(1 if i == 0 else 2),
block_fn=block_fn,
block_repeats=spec[2],
stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
self._init_stochastic_depth_rate, i + 2, 5),
name='block_group_l{}'.format(i + 2))
endpoints[str(i + 2)] = x
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
super(ResNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)
def _stem(self, inputs):
stem_depth_multiplier = self._depth_multiplier if self._scale_stem else 1.0
if self._stem_type == 'v0':
x = layers.Conv2D(
filters=int(64 * stem_depth_multiplier),
kernel_size=7,
strides=2,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
)(inputs)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
trainable=self._bn_trainable,
synchronized=self._use_sync_bn,
)(x)
x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
elif self._stem_type == 'v1':
x = layers.Conv2D(
filters=int(32 * stem_depth_multiplier),
kernel_size=3,
strides=2,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
)(inputs)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
trainable=self._bn_trainable,
synchronized=self._use_sync_bn,
)(x)
x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
x = layers.Conv2D(
filters=int(32 * stem_depth_multiplier),
kernel_size=3,
strides=1,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
)(x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
trainable=self._bn_trainable,
synchronized=self._use_sync_bn,
)(x)
x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
x = layers.Conv2D(
filters=int(64 * stem_depth_multiplier),
kernel_size=3,
strides=1,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
)(x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
trainable=self._bn_trainable,
synchronized=self._use_sync_bn,
)(x)
x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
else:
raise ValueError('Stem type {} not supported.'.format(self._stem_type))
if self._replace_stem_max_pool:
x = layers.Conv2D(
filters=int(64 * self._depth_multiplier),
kernel_size=3,
strides=2,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
)(x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
trainable=self._bn_trainable,
synchronized=self._use_sync_bn,
)(x)
x = tf_utils.get_activation(self._activation, use_keras_layer=True)(x)
else:
x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
return x
def _block_group(self,
inputs: tf.Tensor,
filters: int,
strides: int,
block_fn: Callable[..., tf_keras.layers.Layer],
block_repeats: int = 1,
stochastic_depth_drop_rate: float = 0.0,
name: str = 'block_group'):
"""Creates one group of blocks for the ResNet model.
Args:
inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
filters: An `int` number of filters for the first convolution of the
layer.
strides: An `int` stride to use for the first convolution of the layer.
If greater than 1, this layer will downsample the input.
block_fn: The type of block group. Either `nn_blocks.ResidualBlock` or
`nn_blocks.BottleneckBlock`.
block_repeats: An `int` number of blocks contained in the layer.
stochastic_depth_drop_rate: A `float` of drop rate of the current block
group.
name: A `str` name for the block.
Returns:
The output `tf.Tensor` of the block layer.
"""
x = block_fn(
filters=filters,
strides=strides,
use_projection=True,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
se_ratio=self._se_ratio,
resnetd_shortcut=self._resnetd_shortcut,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
bn_trainable=self._bn_trainable)(
inputs)
for _ in range(1, block_repeats):
x = block_fn(
filters=filters,
strides=1,
use_projection=False,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
se_ratio=self._se_ratio,
resnetd_shortcut=self._resnetd_shortcut,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
bn_trainable=self._bn_trainable)(
x)
return tf_keras.layers.Activation('linear', name=name)(x)
def get_config(self):
config_dict = {
'model_id': self._model_id,
'depth_multiplier': self._depth_multiplier,
'stem_type': self._stem_type,
'resnetd_shortcut': self._resnetd_shortcut,
'replace_stem_max_pool': self._replace_stem_max_pool,
'activation': self._activation,
'se_ratio': self._se_ratio,
'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
'scale_stem': self._scale_stem,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'bn_trainable': self._bn_trainable
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('resnet')
def build_resnet(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras
"""Builds ResNet backbone from a config."""
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
assert backbone_type == 'resnet', (f'Inconsistent backbone type '
f'{backbone_type}')
return ResNet(
model_id=backbone_cfg.model_id,
input_specs=input_specs,
depth_multiplier=backbone_cfg.depth_multiplier,
stem_type=backbone_cfg.stem_type,
resnetd_shortcut=backbone_cfg.resnetd_shortcut,
replace_stem_max_pool=backbone_cfg.replace_stem_max_pool,
se_ratio=backbone_cfg.se_ratio,
init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
scale_stem=backbone_cfg.scale_stem,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer,
bn_trainable=backbone_cfg.bn_trainable)
|