File size: 4,734 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for SpineNet."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras

from official.vision.modeling.backbones import spinenet


class SpineNetTest(parameterized.TestCase, tf.test.TestCase):

  @parameterized.parameters(
      (128, 0.65, 1, 0.5, 128, 4, 6),
      (256, 1.0, 1, 0.5, 256, 3, 6),
      (384, 1.0, 2, 0.5, 256, 4, 7),
      (512, 1.0, 3, 1.0, 256, 3, 7),
      (640, 1.3, 4, 1.0, 384, 3, 7),
  )
  def test_network_creation(self, input_size, filter_size_scale, block_repeats,
                            resample_alpha, endpoints_num_filters, min_level,
                            max_level):
    """Test creation of SpineNet models."""

    tf_keras.backend.set_image_data_format('channels_last')

    input_specs = tf_keras.layers.InputSpec(
        shape=[None, input_size, input_size, 3])
    model = spinenet.SpineNet(
        input_specs=input_specs,
        min_level=min_level,
        max_level=max_level,
        endpoints_num_filters=endpoints_num_filters,
        resample_alpha=resample_alpha,
        block_repeats=block_repeats,
        filter_size_scale=filter_size_scale,
        init_stochastic_depth_rate=0.2,
    )

    inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
    endpoints = model(inputs)

    for l in range(min_level, max_level + 1):
      self.assertIn(str(l), endpoints.keys())
      self.assertAllEqual(
          [1, input_size / 2**l, input_size / 2**l, endpoints_num_filters],
          endpoints[str(l)].shape.as_list())

  @parameterized.parameters(
      ((128, 128), (128, 128)),
      ((128, 128), (256, 256)),
      ((640, 640), (896, 1664)),
  )
  def test_load_from_different_input_specs(self, input_size_1, input_size_2):
    """Test loading checkpoints with different input size."""

    def build_spinenet(input_size):
      tf_keras.backend.set_image_data_format('channels_last')
      input_specs = tf_keras.layers.InputSpec(
          shape=[None, input_size[0], input_size[1], 3])
      model = spinenet.SpineNet(
          input_specs=input_specs,
          min_level=3,
          max_level=7,
          endpoints_num_filters=384,
          resample_alpha=1.0,
          block_repeats=2,
          filter_size_scale=0.5)
      return model

    model_1 = build_spinenet(input_size_1)
    model_2 = build_spinenet(input_size_2)

    ckpt_1 = tf.train.Checkpoint(backbone=model_1)
    ckpt_2 = tf.train.Checkpoint(backbone=model_2)

    ckpt_path = self.get_temp_dir() + '/ckpt'
    ckpt_1.write(ckpt_path)
    ckpt_2.restore(ckpt_path).expect_partial()

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    kwargs = dict(
        min_level=3,
        max_level=7,
        endpoints_num_filters=256,
        resample_alpha=0.5,
        block_repeats=1,
        filter_size_scale=1.0,
        init_stochastic_depth_rate=0.2,
        use_sync_bn=False,
        activation='relu',
        norm_momentum=0.99,
        norm_epsilon=0.001,
        kernel_initializer='VarianceScaling',
        kernel_regularizer=None,
        bias_regularizer=None,
    )
    network = spinenet.SpineNet(**kwargs)

    expected_config = dict(kwargs)
    self.assertEqual(network.get_config(), expected_config)

    # Create another network object from the first object's config.
    new_network = spinenet.SpineNet.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())

  @parameterized.parameters(
      ('relu', tf.nn.relu),
      ('swish', tf.nn.swish)
  )
  def test_activation(self, activation, activation_fn):
    model = spinenet.SpineNet(activation=activation)
    self.assertEqual(model._activation_fn, activation_fn)

  def test_invalid_activation_raises_valurerror(self):
    with self.assertRaises(ValueError):
      spinenet.SpineNet(activation='invalid_activation_name')


if __name__ == '__main__':
  tf.test.main()