File size: 7,017 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for classification network."""

# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.vision.modeling import backbones
from official.vision.modeling import classification_model


class ClassificationNetworkTest(parameterized.TestCase, tf.test.TestCase):

  @parameterized.parameters(
      (192 * 4, 3, 12, 192, 5524416),
      (384 * 4, 6, 12, 384, 21665664),
  )
  def test_vision_transformer_creation(self, mlp_dim, num_heads, num_layers,
                                       hidden_size, num_params):
    """Test for creation of a Vision Transformer classifier."""
    inputs = np.random.rand(2, 224, 224, 3)

    tf_keras.backend.set_image_data_format('channels_last')

    backbone = backbones.VisionTransformer(
        mlp_dim=mlp_dim,
        num_heads=num_heads,
        num_layers=num_layers,
        hidden_size=hidden_size,
        input_specs=tf_keras.layers.InputSpec(shape=[None, 224, 224, 3]),
    )
    self.assertEqual(backbone.count_params(), num_params)

    num_classes = 1000
    model = classification_model.ClassificationModel(
        backbone=backbone,
        num_classes=num_classes,
        dropout_rate=0.2,
    )

    logits = model(inputs)
    self.assertAllEqual([2, num_classes], logits.numpy().shape)

  @parameterized.parameters(
      (128, 50, 'relu'),
      (128, 50, 'relu'),
      (128, 50, 'swish'),
  )
  def test_resnet_network_creation(self, input_size, resnet_model_id,
                                   activation):
    """Test for creation of a ResNet-50 classifier."""
    inputs = np.random.rand(2, input_size, input_size, 3)

    tf_keras.backend.set_image_data_format('channels_last')

    backbone = backbones.ResNet(model_id=resnet_model_id, activation=activation)
    self.assertEqual(backbone.count_params(), 23561152)

    num_classes = 1000
    model = classification_model.ClassificationModel(
        backbone=backbone,
        num_classes=num_classes,
        dropout_rate=0.2,
    )
    self.assertEqual(model.count_params(), 25610152)

    logits = model(inputs)
    self.assertAllEqual([2, num_classes], logits.numpy().shape)

  def test_revnet_network_creation(self):
    """Test for creation of a RevNet-56 classifier."""
    revnet_model_id = 56
    inputs = np.random.rand(2, 224, 224, 3)

    tf_keras.backend.set_image_data_format('channels_last')

    backbone = backbones.RevNet(model_id=revnet_model_id)
    self.assertEqual(backbone.count_params(), 19473792)

    num_classes = 1000
    model = classification_model.ClassificationModel(
        backbone=backbone,
        num_classes=num_classes,
        dropout_rate=0.2,
        add_head_batch_norm=True,
    )
    self.assertEqual(model.count_params(), 22816104)

    logits = model(inputs)
    self.assertAllEqual([2, num_classes], logits.numpy().shape)

  @combinations.generate(
      combinations.combine(
          mobilenet_model_id=[
              'MobileNetV1',
              'MobileNetV2',
              'MobileNetV3Large',
              'MobileNetV3Small',
              'MobileNetV3EdgeTPU',
              'MobileNetMultiAVG',
              'MobileNetMultiMAX',
          ],
          filter_size_scale=[1.0, 0.75],
      ))
  def test_mobilenet_network_creation(self, mobilenet_model_id,
                                      filter_size_scale):
    """Test for creation of a MobileNet classifier."""
    inputs = np.random.rand(2, 224, 224, 3)

    tf_keras.backend.set_image_data_format('channels_last')

    backbone = backbones.MobileNet(
        model_id=mobilenet_model_id, filter_size_scale=filter_size_scale)

    num_classes = 1001
    model = classification_model.ClassificationModel(
        backbone=backbone,
        num_classes=num_classes,
        dropout_rate=0.2,
    )

    logits = model(inputs)
    self.assertAllEqual([2, num_classes], logits.numpy().shape)

  @combinations.generate(
      combinations.combine(
          strategy=[
              strategy_combinations.cloud_tpu_strategy,
              strategy_combinations.one_device_strategy_gpu,
          ],
          use_sync_bn=[False, True],
      ))
  def test_sync_bn_multiple_devices(self, strategy, use_sync_bn):
    """Test for sync bn on TPU and GPU devices."""
    inputs = np.random.rand(64, 128, 128, 3)

    tf_keras.backend.set_image_data_format('channels_last')

    with strategy.scope():
      backbone = backbones.ResNet(model_id=50, use_sync_bn=use_sync_bn)

      model = classification_model.ClassificationModel(
          backbone=backbone,
          num_classes=1000,
          dropout_rate=0.2,
      )
      _ = model(inputs)

  @combinations.generate(
      combinations.combine(
          strategy=[
              strategy_combinations.one_device_strategy_gpu,
          ],
          data_format=['channels_last', 'channels_first'],
          input_dim=[1, 3, 4]))
  def test_data_format_gpu(self, strategy, data_format, input_dim):
    """Test for different data formats on GPU devices."""
    if data_format == 'channels_last':
      inputs = np.random.rand(2, 128, 128, input_dim)
    else:
      inputs = np.random.rand(2, input_dim, 128, 128)
    input_specs = tf_keras.layers.InputSpec(shape=inputs.shape)

    tf_keras.backend.set_image_data_format(data_format)

    with strategy.scope():
      backbone = backbones.ResNet(model_id=50, input_specs=input_specs)

      model = classification_model.ClassificationModel(
          backbone=backbone,
          num_classes=1000,
          input_specs=input_specs,
      )
      _ = model(inputs)

  def test_serialize_deserialize(self):
    """Validate the classification net can be serialized and deserialized."""

    tf_keras.backend.set_image_data_format('channels_last')
    backbone = backbones.ResNet(model_id=50)

    model = classification_model.ClassificationModel(
        backbone=backbone, num_classes=1000)

    config = model.get_config()
    new_model = classification_model.ClassificationModel.from_config(config)

    # Validate that the config can be forced to JSON.
    _ = new_model.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(model.get_config(), new_model.get_config())


if __name__ == '__main__':
  tf.test.main()