Spaces:
Sleeping
Sleeping
File size: 9,822 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the definitions of Feature Pyramid Networks (FPN)."""
from typing import Any, Mapping, Optional
# Import libraries
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.decoders import factory
from official.vision.ops import spatial_transform_ops
@tf_keras.utils.register_keras_serializable(package='Vision')
class FPN(tf_keras.Model):
"""Creates a Feature Pyramid Network (FPN).
This implements the paper:
Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie.
Feature Pyramid Networks for Object Detection.
(https://arxiv.org/pdf/1612.03144)
"""
def __init__(
self,
input_specs: Mapping[str, tf.TensorShape],
min_level: int = 3,
max_level: int = 7,
num_filters: int = 256,
fusion_type: str = 'sum',
use_separable_conv: bool = False,
use_keras_layer: bool = False,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
**kwargs):
"""Initializes a Feature Pyramid Network (FPN).
Args:
input_specs: A `dict` of input specifications. A dictionary consists of
{level: TensorShape} from a backbone.
min_level: An `int` of minimum level in FPN output feature maps.
max_level: An `int` of maximum level in FPN output feature maps.
num_filters: An `int` number of filters in FPN layers.
fusion_type: A `str` of `sum` or `concat`. Whether performing sum or
concat for feature fusion.
use_separable_conv: A `bool`. If True use separable convolution for
convolution in FPN layers.
use_keras_layer: A `bool`. If Ture use keras layers as many as possible.
activation: A `str` name of the activation function.
use_sync_bn: A `bool`. If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_initializer: A `str` name of kernel_initializer for convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
self._config_dict = {
'input_specs': input_specs,
'min_level': min_level,
'max_level': max_level,
'num_filters': num_filters,
'fusion_type': fusion_type,
'use_separable_conv': use_separable_conv,
'use_keras_layer': use_keras_layer,
'activation': activation,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'kernel_initializer': kernel_initializer,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
}
conv2d = (
tf_keras.layers.SeparableConv2D
if use_separable_conv
else tf_keras.layers.Conv2D
)
norm = tf_keras.layers.BatchNormalization
activation_fn = tf_utils.get_activation(activation, use_keras_layer=True)
# Build input feature pyramid.
bn_axis = (
-1 if tf_keras.backend.image_data_format() == 'channels_last' else 1
)
# Get input feature pyramid from backbone.
logging.info('FPN input_specs: %s', input_specs)
inputs = self._build_input_pyramid(input_specs, min_level)
backbone_max_level = min(int(max(inputs.keys())), max_level)
# Build lateral connections.
feats_lateral = {}
for level in range(min_level, backbone_max_level + 1):
feats_lateral[str(level)] = conv2d(
filters=num_filters,
kernel_size=1,
padding='same',
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
name=f'lateral_{level}')(
inputs[str(level)])
# Build top-down path.
feats = {str(backbone_max_level): feats_lateral[str(backbone_max_level)]}
for level in range(backbone_max_level - 1, min_level - 1, -1):
feat_a = spatial_transform_ops.nearest_upsampling(
feats[str(level + 1)], 2, use_keras_layer=use_keras_layer)
feat_b = feats_lateral[str(level)]
if fusion_type == 'sum':
if use_keras_layer:
feats[str(level)] = tf_keras.layers.Add()([feat_a, feat_b])
else:
feats[str(level)] = feat_a + feat_b
elif fusion_type == 'concat':
if use_keras_layer:
feats[str(level)] = tf_keras.layers.Concatenate(axis=-1)(
[feat_a, feat_b])
else:
feats[str(level)] = tf.concat([feat_a, feat_b], axis=-1)
else:
raise ValueError('Fusion type {} not supported.'.format(fusion_type))
# TODO(fyangf): experiment with removing bias in conv2d.
# Build post-hoc 3x3 convolution kernel.
for level in range(min_level, backbone_max_level + 1):
feats[str(level)] = conv2d(
filters=num_filters,
strides=1,
kernel_size=3,
padding='same',
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
name=f'post_hoc_{level}')(
feats[str(level)])
# TODO(fyangf): experiment with removing bias in conv2d.
# Build coarser FPN levels introduced for RetinaNet.
for level in range(backbone_max_level + 1, max_level + 1):
feats_in = feats[str(level - 1)]
if level > backbone_max_level + 1:
feats_in = activation_fn(feats_in)
feats[str(level)] = conv2d(
filters=num_filters,
strides=2,
kernel_size=3,
padding='same',
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
name=f'coarser_{level}')(
feats_in)
# Apply batch norm layers.
for level in range(min_level, max_level + 1):
feats[str(level)] = norm(
axis=bn_axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
synchronized=use_sync_bn,
name=f'norm_{level}')(
feats[str(level)])
self._output_specs = {
str(level): feats[str(level)].get_shape()
for level in range(min_level, max_level + 1)
}
super().__init__(inputs=inputs, outputs=feats, **kwargs)
def _build_input_pyramid(self, input_specs: Mapping[str, tf.TensorShape],
min_level: int):
assert isinstance(input_specs, dict)
if min(input_specs.keys()) > str(min_level):
raise ValueError(
'Backbone min level should be less or equal to FPN min level')
inputs = {}
for level, spec in input_specs.items():
inputs[level] = tf_keras.Input(shape=spec[1:])
return inputs
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self) -> Mapping[str, tf.TensorShape]:
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_decoder_builder('fpn')
def build_fpn_decoder(
input_specs: Mapping[str, tf.TensorShape],
model_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds FPN decoder from a config.
Args:
input_specs: A `dict` of input specifications. A dictionary consists of
{level: TensorShape} from a backbone.
model_config: A OneOfConfig. Model config.
l2_regularizer: A `tf_keras.regularizers.Regularizer` instance. Default to
None.
Returns:
A `tf_keras.Model` instance of the FPN decoder.
Raises:
ValueError: If the model_config.decoder.type is not `fpn`.
"""
decoder_type = model_config.decoder.type
decoder_cfg = model_config.decoder.get()
if decoder_type != 'fpn':
raise ValueError(f'Inconsistent decoder type {decoder_type}. '
'Need to be `fpn`.')
norm_activation_config = model_config.norm_activation
return FPN(
input_specs=input_specs,
min_level=model_config.min_level,
max_level=model_config.max_level,
num_filters=decoder_cfg.num_filters,
fusion_type=decoder_cfg.fusion_type,
use_separable_conv=decoder_cfg.use_separable_conv,
use_keras_layer=decoder_cfg.use_keras_layer,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
|