File size: 17,537 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Factory methods to build models."""

from typing import Optional

import tensorflow as tf, tf_keras

from official.vision.configs import image_classification as classification_cfg
from official.vision.configs import maskrcnn as maskrcnn_cfg
from official.vision.configs import retinanet as retinanet_cfg
from official.vision.configs import semantic_segmentation as segmentation_cfg
from official.vision.modeling import backbones
from official.vision.modeling import classification_model
from official.vision.modeling import decoders
from official.vision.modeling import maskrcnn_model
from official.vision.modeling import retinanet_model
from official.vision.modeling import segmentation_model
from official.vision.modeling.heads import dense_prediction_heads
from official.vision.modeling.heads import instance_heads
from official.vision.modeling.heads import segmentation_heads
from official.vision.modeling.layers import detection_generator
from official.vision.modeling.layers import mask_sampler
from official.vision.modeling.layers import roi_aligner
from official.vision.modeling.layers import roi_generator
from official.vision.modeling.layers import roi_sampler


def build_classification_model(
    input_specs: tf_keras.layers.InputSpec,
    model_config: classification_cfg.ImageClassificationModel,
    l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
    skip_logits_layer: bool = False,
    backbone: Optional[tf_keras.Model] = None) -> tf_keras.Model:
  """Builds the classification model."""
  norm_activation_config = model_config.norm_activation
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)

  model = classification_model.ClassificationModel(
      backbone=backbone,
      num_classes=model_config.num_classes,
      input_specs=input_specs,
      dropout_rate=model_config.dropout_rate,
      kernel_initializer=model_config.kernel_initializer,
      kernel_regularizer=l2_regularizer,
      add_head_batch_norm=model_config.add_head_batch_norm,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      skip_logits_layer=skip_logits_layer)
  return model


def build_maskrcnn(input_specs: tf_keras.layers.InputSpec,
                   model_config: maskrcnn_cfg.MaskRCNN,
                   l2_regularizer: Optional[
                       tf_keras.regularizers.Regularizer] = None,
                   backbone: Optional[tf_keras.Model] = None,
                   decoder: Optional[tf_keras.Model] = None) -> tf_keras.Model:
  """Builds Mask R-CNN model."""
  norm_activation_config = model_config.norm_activation
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)
  backbone_features = backbone(tf_keras.Input(input_specs.shape[1:]))

  if not decoder:
    decoder = decoders.factory.build_decoder(
        input_specs=backbone.output_specs,
        model_config=model_config,
        l2_regularizer=l2_regularizer)

  rpn_head_config = model_config.rpn_head
  roi_generator_config = model_config.roi_generator
  roi_sampler_config = model_config.roi_sampler
  roi_aligner_config = model_config.roi_aligner
  detection_head_config = model_config.detection_head
  generator_config = model_config.detection_generator
  num_anchors_per_location = (
      len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)

  rpn_head = dense_prediction_heads.RPNHead(
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_anchors_per_location=num_anchors_per_location,
      num_convs=rpn_head_config.num_convs,
      num_filters=rpn_head_config.num_filters,
      use_separable_conv=rpn_head_config.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  detection_head = instance_heads.DetectionHead(
      num_classes=model_config.num_classes,
      num_convs=detection_head_config.num_convs,
      num_filters=detection_head_config.num_filters,
      use_separable_conv=detection_head_config.use_separable_conv,
      num_fcs=detection_head_config.num_fcs,
      fc_dims=detection_head_config.fc_dims,
      class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer,
      name='detection_head')

  if decoder:
    decoder_features = decoder(backbone_features)
    rpn_head(decoder_features)

  if roi_sampler_config.cascade_iou_thresholds:
    detection_head_cascade = [detection_head]
    for cascade_num in range(len(roi_sampler_config.cascade_iou_thresholds)):
      detection_head = instance_heads.DetectionHead(
          num_classes=model_config.num_classes,
          num_convs=detection_head_config.num_convs,
          num_filters=detection_head_config.num_filters,
          use_separable_conv=detection_head_config.use_separable_conv,
          num_fcs=detection_head_config.num_fcs,
          fc_dims=detection_head_config.fc_dims,
          class_agnostic_bbox_pred=detection_head_config
          .class_agnostic_bbox_pred,
          activation=norm_activation_config.activation,
          use_sync_bn=norm_activation_config.use_sync_bn,
          norm_momentum=norm_activation_config.norm_momentum,
          norm_epsilon=norm_activation_config.norm_epsilon,
          kernel_regularizer=l2_regularizer,
          name='detection_head_{}'.format(cascade_num + 1))

      detection_head_cascade.append(detection_head)
    detection_head = detection_head_cascade

  roi_generator_obj = roi_generator.MultilevelROIGenerator(
      pre_nms_top_k=roi_generator_config.pre_nms_top_k,
      pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold,
      pre_nms_min_size_threshold=(
          roi_generator_config.pre_nms_min_size_threshold),
      nms_iou_threshold=roi_generator_config.nms_iou_threshold,
      num_proposals=roi_generator_config.num_proposals,
      test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k,
      test_pre_nms_score_threshold=(
          roi_generator_config.test_pre_nms_score_threshold),
      test_pre_nms_min_size_threshold=(
          roi_generator_config.test_pre_nms_min_size_threshold),
      test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold,
      test_num_proposals=roi_generator_config.test_num_proposals,
      use_batched_nms=roi_generator_config.use_batched_nms)

  roi_sampler_cascade = []
  roi_sampler_obj = roi_sampler.ROISampler(
      mix_gt_boxes=roi_sampler_config.mix_gt_boxes,
      num_sampled_rois=roi_sampler_config.num_sampled_rois,
      foreground_fraction=roi_sampler_config.foreground_fraction,
      foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold,
      background_iou_high_threshold=(
          roi_sampler_config.background_iou_high_threshold),
      background_iou_low_threshold=(
          roi_sampler_config.background_iou_low_threshold))
  roi_sampler_cascade.append(roi_sampler_obj)
  # Initialize additional roi simplers for cascade heads.
  if roi_sampler_config.cascade_iou_thresholds:
    for iou in roi_sampler_config.cascade_iou_thresholds:
      roi_sampler_obj = roi_sampler.ROISampler(
          mix_gt_boxes=False,
          num_sampled_rois=roi_sampler_config.num_sampled_rois,
          foreground_iou_threshold=iou,
          background_iou_high_threshold=iou,
          background_iou_low_threshold=0.0,
          skip_subsampling=True)
      roi_sampler_cascade.append(roi_sampler_obj)

  roi_aligner_obj = roi_aligner.MultilevelROIAligner(
      crop_size=roi_aligner_config.crop_size,
      sample_offset=roi_aligner_config.sample_offset)

  detection_generator_obj = detection_generator.DetectionGenerator(
      apply_nms=generator_config.apply_nms,
      pre_nms_top_k=generator_config.pre_nms_top_k,
      pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
      nms_iou_threshold=generator_config.nms_iou_threshold,
      max_num_detections=generator_config.max_num_detections,
      nms_version=generator_config.nms_version,
      use_cpu_nms=generator_config.use_cpu_nms,
      soft_nms_sigma=generator_config.soft_nms_sigma,
      use_sigmoid_probability=generator_config.use_sigmoid_probability)

  if model_config.include_mask:
    mask_head = instance_heads.MaskHead(
        num_classes=model_config.num_classes,
        upsample_factor=model_config.mask_head.upsample_factor,
        num_convs=model_config.mask_head.num_convs,
        num_filters=model_config.mask_head.num_filters,
        use_separable_conv=model_config.mask_head.use_separable_conv,
        activation=model_config.norm_activation.activation,
        norm_momentum=model_config.norm_activation.norm_momentum,
        norm_epsilon=model_config.norm_activation.norm_epsilon,
        kernel_regularizer=l2_regularizer,
        class_agnostic=model_config.mask_head.class_agnostic)

    mask_sampler_obj = mask_sampler.MaskSampler(
        mask_target_size=(
            model_config.mask_roi_aligner.crop_size *
            model_config.mask_head.upsample_factor),
        num_sampled_masks=model_config.mask_sampler.num_sampled_masks)

    mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
        crop_size=model_config.mask_roi_aligner.crop_size,
        sample_offset=model_config.mask_roi_aligner.sample_offset)
  else:
    mask_head = None
    mask_sampler_obj = None
    mask_roi_aligner_obj = None

  model = maskrcnn_model.MaskRCNNModel(
      backbone=backbone,
      decoder=decoder,
      rpn_head=rpn_head,
      detection_head=detection_head,
      roi_generator=roi_generator_obj,
      roi_sampler=roi_sampler_cascade,
      roi_aligner=roi_aligner_obj,
      detection_generator=detection_generator_obj,
      mask_head=mask_head,
      mask_sampler=mask_sampler_obj,
      mask_roi_aligner=mask_roi_aligner_obj,
      class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
      cascade_class_ensemble=detection_head_config.cascade_class_ensemble,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_scales=model_config.anchor.num_scales,
      aspect_ratios=model_config.anchor.aspect_ratios,
      anchor_size=model_config.anchor.anchor_size,
      outer_boxes_scale=model_config.outer_boxes_scale)
  return model


def build_retinanet(
    input_specs: tf_keras.layers.InputSpec,
    model_config: retinanet_cfg.RetinaNet,
    l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
    backbone: Optional[tf_keras.Model] = None,
    decoder: Optional[tf_keras.Model] = None
) -> tf_keras.Model:
  """Builds RetinaNet model."""
  norm_activation_config = model_config.norm_activation
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)
  backbone_features = backbone(tf_keras.Input(input_specs.shape[1:]))

  if not decoder:
    decoder = decoders.factory.build_decoder(
        input_specs=backbone.output_specs,
        model_config=model_config,
        l2_regularizer=l2_regularizer)

  head_config = model_config.head
  generator_config = model_config.detection_generator
  num_anchors_per_location = (
      len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)

  head = dense_prediction_heads.RetinaNetHead(
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_classes=model_config.num_classes,
      num_anchors_per_location=num_anchors_per_location,
      num_convs=head_config.num_convs,
      num_filters=head_config.num_filters,
      attribute_heads=[
          cfg.as_dict() for cfg in (head_config.attribute_heads or [])
      ],
      share_classification_heads=head_config.share_classification_heads,
      use_separable_conv=head_config.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer,
      share_level_convs=head_config.share_level_convs,
  )

  # Builds decoder and head so that their trainable weights are initialized
  if decoder:
    decoder_features = decoder(backbone_features)
    _ = head(decoder_features)

  # Add `input_image_size` into `tflite_post_processing_config`.
  tflite_post_processing_config = (
      generator_config.tflite_post_processing.as_dict()
  )
  tflite_post_processing_config['input_image_size'] = (
      input_specs.shape[1],
      input_specs.shape[2],
  )
  detection_generator_obj = detection_generator.MultilevelDetectionGenerator(
      apply_nms=generator_config.apply_nms,
      pre_nms_top_k=generator_config.pre_nms_top_k,
      pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
      nms_iou_threshold=generator_config.nms_iou_threshold,
      max_num_detections=generator_config.max_num_detections,
      nms_version=generator_config.nms_version,
      use_cpu_nms=generator_config.use_cpu_nms,
      soft_nms_sigma=generator_config.soft_nms_sigma,
      tflite_post_processing_config=tflite_post_processing_config,
      return_decoded=generator_config.return_decoded,
      use_class_agnostic_nms=generator_config.use_class_agnostic_nms,
      box_coder_weights=generator_config.box_coder_weights,
  )

  model = retinanet_model.RetinaNetModel(
      backbone,
      decoder,
      head,
      detection_generator_obj,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_scales=model_config.anchor.num_scales,
      aspect_ratios=model_config.anchor.aspect_ratios,
      anchor_size=model_config.anchor.anchor_size)
  return model


def build_segmentation_model(
    input_specs: tf_keras.layers.InputSpec,
    model_config: segmentation_cfg.SemanticSegmentationModel,
    l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
    backbone: Optional[tf_keras.Model] = None,
    decoder: Optional[tf_keras.Model] = None
) -> tf_keras.Model:
  """Builds Segmentation model."""
  norm_activation_config = model_config.norm_activation
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)

  if not decoder:
    decoder = decoders.factory.build_decoder(
        input_specs=backbone.output_specs,
        model_config=model_config,
        l2_regularizer=l2_regularizer)

  head_config = model_config.head

  head = segmentation_heads.SegmentationHead(
      num_classes=model_config.num_classes,
      level=head_config.level,
      num_convs=head_config.num_convs,
      prediction_kernel_size=head_config.prediction_kernel_size,
      num_filters=head_config.num_filters,
      use_depthwise_convolution=head_config.use_depthwise_convolution,
      upsample_factor=head_config.upsample_factor,
      feature_fusion=head_config.feature_fusion,
      low_level=head_config.low_level,
      low_level_num_filters=head_config.low_level_num_filters,
      activation=norm_activation_config.activation,
      logit_activation=head_config.logit_activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  mask_scoring_head = None
  if model_config.mask_scoring_head:
    mask_scoring_head = segmentation_heads.MaskScoring(
        num_classes=model_config.num_classes,
        **model_config.mask_scoring_head.as_dict(),
        activation=norm_activation_config.activation,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon,
        kernel_regularizer=l2_regularizer)

  model = segmentation_model.SegmentationModel(
      backbone, decoder, head, mask_scoring_head=mask_scoring_head)
  return model