Spaces:
Sleeping
Sleeping
File size: 17,537 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Factory methods to build models."""
from typing import Optional
import tensorflow as tf, tf_keras
from official.vision.configs import image_classification as classification_cfg
from official.vision.configs import maskrcnn as maskrcnn_cfg
from official.vision.configs import retinanet as retinanet_cfg
from official.vision.configs import semantic_segmentation as segmentation_cfg
from official.vision.modeling import backbones
from official.vision.modeling import classification_model
from official.vision.modeling import decoders
from official.vision.modeling import maskrcnn_model
from official.vision.modeling import retinanet_model
from official.vision.modeling import segmentation_model
from official.vision.modeling.heads import dense_prediction_heads
from official.vision.modeling.heads import instance_heads
from official.vision.modeling.heads import segmentation_heads
from official.vision.modeling.layers import detection_generator
from official.vision.modeling.layers import mask_sampler
from official.vision.modeling.layers import roi_aligner
from official.vision.modeling.layers import roi_generator
from official.vision.modeling.layers import roi_sampler
def build_classification_model(
input_specs: tf_keras.layers.InputSpec,
model_config: classification_cfg.ImageClassificationModel,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
skip_logits_layer: bool = False,
backbone: Optional[tf_keras.Model] = None) -> tf_keras.Model:
"""Builds the classification model."""
norm_activation_config = model_config.norm_activation
if not backbone:
backbone = backbones.factory.build_backbone(
input_specs=input_specs,
backbone_config=model_config.backbone,
norm_activation_config=norm_activation_config,
l2_regularizer=l2_regularizer)
model = classification_model.ClassificationModel(
backbone=backbone,
num_classes=model_config.num_classes,
input_specs=input_specs,
dropout_rate=model_config.dropout_rate,
kernel_initializer=model_config.kernel_initializer,
kernel_regularizer=l2_regularizer,
add_head_batch_norm=model_config.add_head_batch_norm,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
skip_logits_layer=skip_logits_layer)
return model
def build_maskrcnn(input_specs: tf_keras.layers.InputSpec,
model_config: maskrcnn_cfg.MaskRCNN,
l2_regularizer: Optional[
tf_keras.regularizers.Regularizer] = None,
backbone: Optional[tf_keras.Model] = None,
decoder: Optional[tf_keras.Model] = None) -> tf_keras.Model:
"""Builds Mask R-CNN model."""
norm_activation_config = model_config.norm_activation
if not backbone:
backbone = backbones.factory.build_backbone(
input_specs=input_specs,
backbone_config=model_config.backbone,
norm_activation_config=norm_activation_config,
l2_regularizer=l2_regularizer)
backbone_features = backbone(tf_keras.Input(input_specs.shape[1:]))
if not decoder:
decoder = decoders.factory.build_decoder(
input_specs=backbone.output_specs,
model_config=model_config,
l2_regularizer=l2_regularizer)
rpn_head_config = model_config.rpn_head
roi_generator_config = model_config.roi_generator
roi_sampler_config = model_config.roi_sampler
roi_aligner_config = model_config.roi_aligner
detection_head_config = model_config.detection_head
generator_config = model_config.detection_generator
num_anchors_per_location = (
len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)
rpn_head = dense_prediction_heads.RPNHead(
min_level=model_config.min_level,
max_level=model_config.max_level,
num_anchors_per_location=num_anchors_per_location,
num_convs=rpn_head_config.num_convs,
num_filters=rpn_head_config.num_filters,
use_separable_conv=rpn_head_config.use_separable_conv,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
detection_head = instance_heads.DetectionHead(
num_classes=model_config.num_classes,
num_convs=detection_head_config.num_convs,
num_filters=detection_head_config.num_filters,
use_separable_conv=detection_head_config.use_separable_conv,
num_fcs=detection_head_config.num_fcs,
fc_dims=detection_head_config.fc_dims,
class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer,
name='detection_head')
if decoder:
decoder_features = decoder(backbone_features)
rpn_head(decoder_features)
if roi_sampler_config.cascade_iou_thresholds:
detection_head_cascade = [detection_head]
for cascade_num in range(len(roi_sampler_config.cascade_iou_thresholds)):
detection_head = instance_heads.DetectionHead(
num_classes=model_config.num_classes,
num_convs=detection_head_config.num_convs,
num_filters=detection_head_config.num_filters,
use_separable_conv=detection_head_config.use_separable_conv,
num_fcs=detection_head_config.num_fcs,
fc_dims=detection_head_config.fc_dims,
class_agnostic_bbox_pred=detection_head_config
.class_agnostic_bbox_pred,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer,
name='detection_head_{}'.format(cascade_num + 1))
detection_head_cascade.append(detection_head)
detection_head = detection_head_cascade
roi_generator_obj = roi_generator.MultilevelROIGenerator(
pre_nms_top_k=roi_generator_config.pre_nms_top_k,
pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold,
pre_nms_min_size_threshold=(
roi_generator_config.pre_nms_min_size_threshold),
nms_iou_threshold=roi_generator_config.nms_iou_threshold,
num_proposals=roi_generator_config.num_proposals,
test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k,
test_pre_nms_score_threshold=(
roi_generator_config.test_pre_nms_score_threshold),
test_pre_nms_min_size_threshold=(
roi_generator_config.test_pre_nms_min_size_threshold),
test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold,
test_num_proposals=roi_generator_config.test_num_proposals,
use_batched_nms=roi_generator_config.use_batched_nms)
roi_sampler_cascade = []
roi_sampler_obj = roi_sampler.ROISampler(
mix_gt_boxes=roi_sampler_config.mix_gt_boxes,
num_sampled_rois=roi_sampler_config.num_sampled_rois,
foreground_fraction=roi_sampler_config.foreground_fraction,
foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold,
background_iou_high_threshold=(
roi_sampler_config.background_iou_high_threshold),
background_iou_low_threshold=(
roi_sampler_config.background_iou_low_threshold))
roi_sampler_cascade.append(roi_sampler_obj)
# Initialize additional roi simplers for cascade heads.
if roi_sampler_config.cascade_iou_thresholds:
for iou in roi_sampler_config.cascade_iou_thresholds:
roi_sampler_obj = roi_sampler.ROISampler(
mix_gt_boxes=False,
num_sampled_rois=roi_sampler_config.num_sampled_rois,
foreground_iou_threshold=iou,
background_iou_high_threshold=iou,
background_iou_low_threshold=0.0,
skip_subsampling=True)
roi_sampler_cascade.append(roi_sampler_obj)
roi_aligner_obj = roi_aligner.MultilevelROIAligner(
crop_size=roi_aligner_config.crop_size,
sample_offset=roi_aligner_config.sample_offset)
detection_generator_obj = detection_generator.DetectionGenerator(
apply_nms=generator_config.apply_nms,
pre_nms_top_k=generator_config.pre_nms_top_k,
pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
nms_iou_threshold=generator_config.nms_iou_threshold,
max_num_detections=generator_config.max_num_detections,
nms_version=generator_config.nms_version,
use_cpu_nms=generator_config.use_cpu_nms,
soft_nms_sigma=generator_config.soft_nms_sigma,
use_sigmoid_probability=generator_config.use_sigmoid_probability)
if model_config.include_mask:
mask_head = instance_heads.MaskHead(
num_classes=model_config.num_classes,
upsample_factor=model_config.mask_head.upsample_factor,
num_convs=model_config.mask_head.num_convs,
num_filters=model_config.mask_head.num_filters,
use_separable_conv=model_config.mask_head.use_separable_conv,
activation=model_config.norm_activation.activation,
norm_momentum=model_config.norm_activation.norm_momentum,
norm_epsilon=model_config.norm_activation.norm_epsilon,
kernel_regularizer=l2_regularizer,
class_agnostic=model_config.mask_head.class_agnostic)
mask_sampler_obj = mask_sampler.MaskSampler(
mask_target_size=(
model_config.mask_roi_aligner.crop_size *
model_config.mask_head.upsample_factor),
num_sampled_masks=model_config.mask_sampler.num_sampled_masks)
mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
crop_size=model_config.mask_roi_aligner.crop_size,
sample_offset=model_config.mask_roi_aligner.sample_offset)
else:
mask_head = None
mask_sampler_obj = None
mask_roi_aligner_obj = None
model = maskrcnn_model.MaskRCNNModel(
backbone=backbone,
decoder=decoder,
rpn_head=rpn_head,
detection_head=detection_head,
roi_generator=roi_generator_obj,
roi_sampler=roi_sampler_cascade,
roi_aligner=roi_aligner_obj,
detection_generator=detection_generator_obj,
mask_head=mask_head,
mask_sampler=mask_sampler_obj,
mask_roi_aligner=mask_roi_aligner_obj,
class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
cascade_class_ensemble=detection_head_config.cascade_class_ensemble,
min_level=model_config.min_level,
max_level=model_config.max_level,
num_scales=model_config.anchor.num_scales,
aspect_ratios=model_config.anchor.aspect_ratios,
anchor_size=model_config.anchor.anchor_size,
outer_boxes_scale=model_config.outer_boxes_scale)
return model
def build_retinanet(
input_specs: tf_keras.layers.InputSpec,
model_config: retinanet_cfg.RetinaNet,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
backbone: Optional[tf_keras.Model] = None,
decoder: Optional[tf_keras.Model] = None
) -> tf_keras.Model:
"""Builds RetinaNet model."""
norm_activation_config = model_config.norm_activation
if not backbone:
backbone = backbones.factory.build_backbone(
input_specs=input_specs,
backbone_config=model_config.backbone,
norm_activation_config=norm_activation_config,
l2_regularizer=l2_regularizer)
backbone_features = backbone(tf_keras.Input(input_specs.shape[1:]))
if not decoder:
decoder = decoders.factory.build_decoder(
input_specs=backbone.output_specs,
model_config=model_config,
l2_regularizer=l2_regularizer)
head_config = model_config.head
generator_config = model_config.detection_generator
num_anchors_per_location = (
len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)
head = dense_prediction_heads.RetinaNetHead(
min_level=model_config.min_level,
max_level=model_config.max_level,
num_classes=model_config.num_classes,
num_anchors_per_location=num_anchors_per_location,
num_convs=head_config.num_convs,
num_filters=head_config.num_filters,
attribute_heads=[
cfg.as_dict() for cfg in (head_config.attribute_heads or [])
],
share_classification_heads=head_config.share_classification_heads,
use_separable_conv=head_config.use_separable_conv,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer,
share_level_convs=head_config.share_level_convs,
)
# Builds decoder and head so that their trainable weights are initialized
if decoder:
decoder_features = decoder(backbone_features)
_ = head(decoder_features)
# Add `input_image_size` into `tflite_post_processing_config`.
tflite_post_processing_config = (
generator_config.tflite_post_processing.as_dict()
)
tflite_post_processing_config['input_image_size'] = (
input_specs.shape[1],
input_specs.shape[2],
)
detection_generator_obj = detection_generator.MultilevelDetectionGenerator(
apply_nms=generator_config.apply_nms,
pre_nms_top_k=generator_config.pre_nms_top_k,
pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
nms_iou_threshold=generator_config.nms_iou_threshold,
max_num_detections=generator_config.max_num_detections,
nms_version=generator_config.nms_version,
use_cpu_nms=generator_config.use_cpu_nms,
soft_nms_sigma=generator_config.soft_nms_sigma,
tflite_post_processing_config=tflite_post_processing_config,
return_decoded=generator_config.return_decoded,
use_class_agnostic_nms=generator_config.use_class_agnostic_nms,
box_coder_weights=generator_config.box_coder_weights,
)
model = retinanet_model.RetinaNetModel(
backbone,
decoder,
head,
detection_generator_obj,
min_level=model_config.min_level,
max_level=model_config.max_level,
num_scales=model_config.anchor.num_scales,
aspect_ratios=model_config.anchor.aspect_ratios,
anchor_size=model_config.anchor.anchor_size)
return model
def build_segmentation_model(
input_specs: tf_keras.layers.InputSpec,
model_config: segmentation_cfg.SemanticSegmentationModel,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
backbone: Optional[tf_keras.Model] = None,
decoder: Optional[tf_keras.Model] = None
) -> tf_keras.Model:
"""Builds Segmentation model."""
norm_activation_config = model_config.norm_activation
if not backbone:
backbone = backbones.factory.build_backbone(
input_specs=input_specs,
backbone_config=model_config.backbone,
norm_activation_config=norm_activation_config,
l2_regularizer=l2_regularizer)
if not decoder:
decoder = decoders.factory.build_decoder(
input_specs=backbone.output_specs,
model_config=model_config,
l2_regularizer=l2_regularizer)
head_config = model_config.head
head = segmentation_heads.SegmentationHead(
num_classes=model_config.num_classes,
level=head_config.level,
num_convs=head_config.num_convs,
prediction_kernel_size=head_config.prediction_kernel_size,
num_filters=head_config.num_filters,
use_depthwise_convolution=head_config.use_depthwise_convolution,
upsample_factor=head_config.upsample_factor,
feature_fusion=head_config.feature_fusion,
low_level=head_config.low_level,
low_level_num_filters=head_config.low_level_num_filters,
activation=norm_activation_config.activation,
logit_activation=head_config.logit_activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
mask_scoring_head = None
if model_config.mask_scoring_head:
mask_scoring_head = segmentation_heads.MaskScoring(
num_classes=model_config.num_classes,
**model_config.mask_scoring_head.as_dict(),
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
model = segmentation_model.SegmentationModel(
backbone, decoder, head, mask_scoring_head=mask_scoring_head)
return model
|