Spaces:
Sleeping
Sleeping
File size: 25,991 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of dense prediction heads."""
from typing import Any, Dict, List, Mapping, Optional, Union
# Import libraries
import numpy as np
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
@tf_keras.utils.register_keras_serializable(package='Vision')
class RetinaNetHead(tf_keras.layers.Layer):
"""Creates a RetinaNet head."""
def __init__(
self,
min_level: int,
max_level: int,
num_classes: int,
num_anchors_per_location: int,
num_convs: int = 4,
num_filters: int = 256,
attribute_heads: Optional[List[Dict[str, Any]]] = None,
share_classification_heads: bool = False,
use_separable_conv: bool = False,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
num_params_per_anchor: int = 4,
share_level_convs: bool = True,
**kwargs,
):
"""Initializes a RetinaNet head.
Args:
min_level: An `int` number of minimum feature level.
max_level: An `int` number of maximum feature level.
num_classes: An `int` number of classes to predict.
num_anchors_per_location: An `int` number of anchors per pixel location.
num_convs: An `int` number that represents the number of the intermediate
conv layers before the prediction.
num_filters: An `int` number that represents the number of filters of the
intermediate conv layers.
attribute_heads: If not None, a list that contains a dict for each
additional attribute head. Each dict consists of 4 key-value pairs:
`name`, `type` ('regression' or 'classification'), `size` (number of
predicted values for each instance), and `prediction_tower_name`
(optional, specifies shared prediction towers.)
share_classification_heads: A `bool` that indicates whether sharing
weights among the main and attribute classification heads.
use_separable_conv: A `bool` that indicates whether the separable
convolution layers is used.
activation: A `str` that indicates which activation is used, e.g. 'relu',
'swish', etc.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
num_params_per_anchor: Number of parameters required to specify an anchor
box. For example, `num_params_per_anchor` would be 4 for axis-aligned
anchor boxes specified by their y-centers, x-centers, heights, and
widths.
share_level_convs: An optional bool to enable sharing convs
across levels for classnet, boxnet, classifier and box regressor.
If True, convs will be shared across all levels.
**kwargs: Additional keyword arguments to be passed.
"""
super().__init__(**kwargs)
self._config_dict = {
'min_level': min_level,
'max_level': max_level,
'num_classes': num_classes,
'num_anchors_per_location': num_anchors_per_location,
'num_convs': num_convs,
'num_filters': num_filters,
'attribute_heads': attribute_heads,
'share_classification_heads': share_classification_heads,
'use_separable_conv': use_separable_conv,
'activation': activation,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
'num_params_per_anchor': num_params_per_anchor,
'share_level_convs': share_level_convs,
}
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation = tf_utils.get_activation(activation)
self._conv_kwargs = {
'filters': self._config_dict['num_filters'],
'kernel_size': 3,
'padding': 'same',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if not self._config_dict['use_separable_conv']:
self._conv_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(stddev=0.01),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
self._bn_kwargs = {
'axis': self._bn_axis,
'momentum': self._config_dict['norm_momentum'],
'epsilon': self._config_dict['norm_epsilon'],
}
self._classifier_kwargs = {
'filters': (
self._config_dict['num_classes']
* self._config_dict['num_anchors_per_location']
),
'kernel_size': 3,
'padding': 'same',
'bias_initializer': tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if not self._config_dict['use_separable_conv']:
self._classifier_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(stddev=1e-5),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
self._box_regressor_kwargs = {
'filters': (
self._config_dict['num_params_per_anchor']
* self._config_dict['num_anchors_per_location']
),
'kernel_size': 3,
'padding': 'same',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if not self._config_dict['use_separable_conv']:
self._box_regressor_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(stddev=1e-5),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
if self._config_dict['attribute_heads']:
self._init_attribute_kwargs()
def _conv_kwargs_new_kernel_init(self, conv_kwargs):
if 'kernel_initializer' in conv_kwargs:
conv_kwargs['kernel_initializer'] = tf_utils.clone_initializer(
conv_kwargs['kernel_initializer']
)
if 'pointwise_initializer' in conv_kwargs:
conv_kwargs['pointwise_initializer'] = tf_utils.clone_initializer(
conv_kwargs['pointwise_initializer']
)
if 'depthwise_initializer' in conv_kwargs:
conv_kwargs['depthwise_initializer'] = tf_utils.clone_initializer(
conv_kwargs['depthwise_initializer']
)
return conv_kwargs
def _init_attribute_kwargs(self):
self._attribute_kwargs = []
for att_config in self._config_dict['attribute_heads']:
att_type = att_config['type']
att_size = att_config['size']
att_prediction_tower_name = att_config['prediction_tower_name']
att_predictor_kwargs = {
'filters': att_size * self._config_dict['num_anchors_per_location'],
'kernel_size': 3,
'padding': 'same',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if att_type == 'regression':
att_predictor_kwargs.update(
{'bias_initializer': tf.zeros_initializer()}
)
elif att_type == 'classification':
att_predictor_kwargs.update(
{
'bias_initializer': tf.constant_initializer(
-np.log((1 - 0.01) / 0.01)
)
}
)
else:
raise ValueError(
'Attribute head type {} not supported.'.format(att_type)
)
if (
att_prediction_tower_name
and self._config_dict['share_classification_heads']
):
raise ValueError(
'share_classification_heads cannot be set as True when'
' att_prediction_tower_name is specified.'
)
if not self._config_dict['use_separable_conv']:
att_predictor_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(
stddev=1e-5
),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
self._attribute_kwargs.append(att_predictor_kwargs)
def _apply_prediction_tower(self, features, convs, norms) -> tf.Tensor:
x = features
for conv, norm in zip(convs, norms):
x = conv(x)
x = norm(x)
x = self._activation(x)
return x
def _apply_attribute_net(
self, attributes, level, level_idx, this_level_features, classnet_x
):
prediction_tower_output = {}
for att_config in self._config_dict['attribute_heads']:
att_name = att_config['name']
att_type = att_config['type']
if (
self._config_dict['share_classification_heads']
and att_type == 'classification'
):
attributes[att_name][str(level)] = self._att_predictors[att_name](
classnet_x
)
else:
def _apply_attribute_prediction_tower(
atttribute_name, features, feature_level
):
return self._apply_prediction_tower(
features,
self._att_convs[atttribute_name],
self._att_norms[atttribute_name][feature_level],
)
prediction_tower_name = att_config['prediction_tower_name']
if not prediction_tower_name:
attributes[att_name][str(level)] = self._att_predictors[att_name](
_apply_attribute_prediction_tower(
att_name, this_level_features, level_idx
)
)
else:
if prediction_tower_name not in prediction_tower_output:
prediction_tower_output[prediction_tower_name] = (
_apply_attribute_prediction_tower(
att_name, this_level_features, level_idx
)
)
attributes[att_name][str(level)] = self._att_predictors[att_name](
prediction_tower_output[prediction_tower_name]
)
def _build_prediction_tower(
self, net_name, predictor_name, conv_op, bn_op, predictor_kwargs
):
"""Builds the prediction tower. Convs across levels can be shared or not."""
convs = []
norms = []
for level in range(
self._config_dict['min_level'], self._config_dict['max_level'] + 1
):
if not self._config_dict['share_level_convs']:
this_level_convs = []
this_level_norms = []
for i in range(self._config_dict['num_convs']):
conv_kwargs = self._conv_kwargs_new_kernel_init(self._conv_kwargs)
if not self._config_dict['share_level_convs']:
# Do not share convs.
this_level_convs.append(
conv_op(name=f'{net_name}-conv_{level}_{i}', **conv_kwargs)
)
elif level == self._config_dict['min_level']:
convs.append(conv_op(name=f'{net_name}-conv_{i}', **conv_kwargs))
this_level_norms.append(
bn_op(name=f'{net_name}-conv-norm_{level}_{i}', **self._bn_kwargs)
)
norms.append(this_level_norms)
if not self._config_dict['share_level_convs']:
convs.append(this_level_convs)
# Create predictors after additional convs.
if self._config_dict['share_level_convs']:
predictors = conv_op(name=predictor_name, **predictor_kwargs)
else:
predictors = []
for level in range(
self._config_dict['min_level'], self._config_dict['max_level'] + 1
):
predictor_kwargs = self._conv_kwargs_new_kernel_init(predictor_kwargs)
predictors.append(
conv_op(name=f'{predictor_name}-{level}', **predictor_kwargs)
)
return convs, norms, predictors
def _build_attribute_net(self, conv_op, bn_op):
self._att_predictors = {}
self._att_convs = {}
self._att_norms = {}
for att_config, att_predictor_kwargs in zip(
self._config_dict['attribute_heads'], self._attribute_kwargs
):
att_name = att_config['name']
att_num_convs = (
att_config.get('num_convs') or self._config_dict['num_convs']
)
att_num_filters = (
att_config.get('num_filters') or self._config_dict['num_filters']
)
if att_num_convs < 0:
raise ValueError(f'Invalid `num_convs` {att_num_convs} for {att_name}.')
if att_num_filters < 0:
raise ValueError(
f'Invalid `num_filters` {att_num_filters} for {att_name}.'
)
att_conv_kwargs = self._conv_kwargs.copy()
att_conv_kwargs['filters'] = att_num_filters
att_convs_i = []
att_norms_i = []
# Build conv and norm layers.
for level in range(
self._config_dict['min_level'], self._config_dict['max_level'] + 1
):
this_level_att_norms = []
for i in range(att_num_convs):
if level == self._config_dict['min_level']:
att_conv_name = '{}-conv_{}'.format(att_name, i)
att_convs_i.append(conv_op(name=att_conv_name, **att_conv_kwargs))
att_norm_name = '{}-conv-norm_{}_{}'.format(att_name, level, i)
this_level_att_norms.append(
bn_op(name=att_norm_name, **self._bn_kwargs)
)
att_norms_i.append(this_level_att_norms)
self._att_convs[att_name] = att_convs_i
self._att_norms[att_name] = att_norms_i
# Build the final prediction layer.
self._att_predictors[att_name] = conv_op(
name='{}_attributes'.format(att_name), **att_predictor_kwargs
)
def build(self, input_shape: Union[tf.TensorShape, List[tf.TensorShape]]):
"""Creates the variables of the head."""
conv_op = (
tf_keras.layers.SeparableConv2D
if self._config_dict['use_separable_conv']
else tf_keras.layers.Conv2D
)
bn_op = (
tf_keras.layers.experimental.SyncBatchNormalization
if self._config_dict['use_sync_bn']
else tf_keras.layers.BatchNormalization
)
# Class net.
self._cls_convs, self._cls_norms, self._classifier = (
self._build_prediction_tower(
'classnet', 'scores', conv_op, bn_op, self._classifier_kwargs
)
)
# Box net.
self._box_convs, self._box_norms, self._box_regressor = (
self._build_prediction_tower(
'boxnet', 'boxes', conv_op, bn_op, self._box_regressor_kwargs
)
)
# Attribute learning nets.
if self._config_dict['attribute_heads']:
self._build_attribute_net(conv_op, bn_op)
super().build(input_shape)
def call(self, features: Mapping[str, tf.Tensor]):
"""Forward pass of the RetinaNet head.
Args:
features: A `dict` of `tf.Tensor` where
- key: A `str` of the level of the multilevel features.
- values: A `tf.Tensor`, the feature map tensors, whose shape is
[batch, height_l, width_l, channels].
Returns:
scores: A `dict` of `tf.Tensor` which includes scores of the predictions.
- key: A `str` of the level of the multilevel predictions.
- values: A `tf.Tensor` of the box scores predicted from a particular
feature level, whose shape is
[batch, height_l, width_l, num_classes * num_anchors_per_location].
boxes: A `dict` of `tf.Tensor` which includes coordinates of the
predictions.
- key: A `str` of the level of the multilevel predictions.
- values: A `tf.Tensor` of the box scores predicted from a particular
feature level, whose shape is
[batch, height_l, width_l,
num_params_per_anchor * num_anchors_per_location].
attributes: a dict of (attribute_name, attribute_prediction). Each
`attribute_prediction` is a dict of:
- key: `str`, the level of the multilevel predictions.
- values: `Tensor`, the box scores predicted from a particular feature
level, whose shape is
[batch, height_l, width_l,
attribute_size * num_anchors_per_location].
Can be an empty dictionary if no attribute learning is required.
"""
scores = {}
boxes = {}
if self._config_dict['attribute_heads']:
attributes = {
att_config['name']: {}
for att_config in self._config_dict['attribute_heads']
}
else:
attributes = {}
for i, level in enumerate(
range(self._config_dict['min_level'],
self._config_dict['max_level'] + 1)):
this_level_features = features[str(level)]
if self._config_dict['share_level_convs']:
cls_convs = self._cls_convs
box_convs = self._box_convs
classifier = self._classifier
box_regressor = self._box_regressor
else:
cls_convs = self._cls_convs[i]
box_convs = self._box_convs[i]
classifier = self._classifier[i]
box_regressor = self._box_regressor[i]
# Apply class net.
x = self._apply_prediction_tower(
this_level_features, cls_convs, self._cls_norms[i]
)
scores[str(level)] = classifier(x)
classnet_x = x
# Apply box net.
x = self._apply_prediction_tower(
this_level_features, box_convs, self._box_norms[i]
)
boxes[str(level)] = box_regressor(x)
# Apply attribute nets.
if self._config_dict['attribute_heads']:
self._apply_attribute_net(
attributes, level, i, this_level_features, classnet_x
)
return scores, boxes, attributes
def get_config(self):
return self._config_dict
@classmethod
def from_config(cls, config):
return cls(**config)
@tf_keras.utils.register_keras_serializable(package='Vision')
class RPNHead(tf_keras.layers.Layer):
"""Creates a Region Proposal Network (RPN) head."""
def __init__(
self,
min_level: int,
max_level: int,
num_anchors_per_location: int,
num_convs: int = 1,
num_filters: int = 256,
use_separable_conv: bool = False,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
**kwargs):
"""Initializes a Region Proposal Network head.
Args:
min_level: An `int` number of minimum feature level.
max_level: An `int` number of maximum feature level.
num_anchors_per_location: An `int` number of number of anchors per pixel
location.
num_convs: An `int` number that represents the number of the intermediate
convolution layers before the prediction.
num_filters: An `int` number that represents the number of filters of the
intermediate convolution layers.
use_separable_conv: A `bool` that indicates whether the separable
convolution layers is used.
activation: A `str` that indicates which activation is used, e.g. 'relu',
'swish', etc.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
super(RPNHead, self).__init__(**kwargs)
self._config_dict = {
'min_level': min_level,
'max_level': max_level,
'num_anchors_per_location': num_anchors_per_location,
'num_convs': num_convs,
'num_filters': num_filters,
'use_separable_conv': use_separable_conv,
'activation': activation,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
}
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation = tf_utils.get_activation(activation)
def build(self, input_shape):
"""Creates the variables of the head."""
conv_op = (tf_keras.layers.SeparableConv2D
if self._config_dict['use_separable_conv']
else tf_keras.layers.Conv2D)
conv_kwargs = {
'filters': self._config_dict['num_filters'],
'kernel_size': 3,
'padding': 'same',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if not self._config_dict['use_separable_conv']:
conv_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(
stddev=0.01),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
bn_op = (tf_keras.layers.experimental.SyncBatchNormalization
if self._config_dict['use_sync_bn']
else tf_keras.layers.BatchNormalization)
bn_kwargs = {
'axis': self._bn_axis,
'momentum': self._config_dict['norm_momentum'],
'epsilon': self._config_dict['norm_epsilon'],
}
self._convs = []
self._norms = []
for level in range(
self._config_dict['min_level'], self._config_dict['max_level'] + 1):
this_level_norms = []
for i in range(self._config_dict['num_convs']):
if level == self._config_dict['min_level']:
conv_name = 'rpn-conv_{}'.format(i)
if 'kernel_initializer' in conv_kwargs:
conv_kwargs['kernel_initializer'] = tf_utils.clone_initializer(
conv_kwargs['kernel_initializer'])
self._convs.append(conv_op(name=conv_name, **conv_kwargs))
norm_name = 'rpn-conv-norm_{}_{}'.format(level, i)
this_level_norms.append(bn_op(name=norm_name, **bn_kwargs))
self._norms.append(this_level_norms)
classifier_kwargs = {
'filters': self._config_dict['num_anchors_per_location'],
'kernel_size': 1,
'padding': 'valid',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if not self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(
stddev=1e-5),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
self._classifier = conv_op(name='rpn-scores', **classifier_kwargs)
box_regressor_kwargs = {
'filters': 4 * self._config_dict['num_anchors_per_location'],
'kernel_size': 1,
'padding': 'valid',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if not self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'kernel_initializer': tf_keras.initializers.RandomNormal(
stddev=1e-5),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
self._box_regressor = conv_op(name='rpn-boxes', **box_regressor_kwargs)
super(RPNHead, self).build(input_shape)
def call(self, features: Mapping[str, tf.Tensor]):
"""Forward pass of the RPN head.
Args:
features: A `dict` of `tf.Tensor` where
- key: A `str` of the level of the multilevel features.
- values: A `tf.Tensor`, the feature map tensors, whose shape is [batch,
height_l, width_l, channels].
Returns:
scores: A `dict` of `tf.Tensor` which includes scores of the predictions.
- key: A `str` of the level of the multilevel predictions.
- values: A `tf.Tensor` of the box scores predicted from a particular
feature level, whose shape is
[batch, height_l, width_l, num_classes * num_anchors_per_location].
boxes: A `dict` of `tf.Tensor` which includes coordinates of the
predictions.
- key: A `str` of the level of the multilevel predictions.
- values: A `tf.Tensor` of the box scores predicted from a particular
feature level, whose shape is
[batch, height_l, width_l, 4 * num_anchors_per_location].
"""
scores = {}
boxes = {}
for i, level in enumerate(
range(self._config_dict['min_level'],
self._config_dict['max_level'] + 1)):
x = features[str(level)]
for conv, norm in zip(self._convs, self._norms[i]):
x = conv(x)
x = norm(x)
x = self._activation(x)
scores[str(level)] = self._classifier(x)
boxes[str(level)] = self._box_regressor(x)
return scores, boxes
def get_config(self):
return self._config_dict
@classmethod
def from_config(cls, config):
return cls(**config)
|