Spaces:
Sleeping
Sleeping
File size: 10,575 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains common building blocks for 3D networks."""
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.vision.modeling.layers import nn_layers
@tf_keras.utils.register_keras_serializable(package='Vision')
class SelfGating(tf_keras.layers.Layer):
"""Feature gating as used in S3D-G.
This implements the S3D-G network from:
Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, Kevin Murphy.
Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video
Classification.
(https://arxiv.org/pdf/1712.04851.pdf)
"""
def __init__(self, filters, **kwargs):
"""Initializes a self-gating layer.
Args:
filters: An `int` number of filters for the convolutional layer.
**kwargs: Additional keyword arguments to be passed.
"""
super(SelfGating, self).__init__(**kwargs)
self._filters = filters
def build(self, input_shape):
self._spatial_temporal_average = tf_keras.layers.GlobalAveragePooling3D()
# No BN and activation after conv.
self._transformer_w = tf_keras.layers.Conv3D(
filters=self._filters,
kernel_size=[1, 1, 1],
use_bias=True,
kernel_initializer=tf_keras.initializers.TruncatedNormal(
mean=0.0, stddev=0.01))
super(SelfGating, self).build(input_shape)
def call(self, inputs):
x = self._spatial_temporal_average(inputs)
x = tf.expand_dims(x, 1)
x = tf.expand_dims(x, 2)
x = tf.expand_dims(x, 3)
x = self._transformer_w(x)
x = tf.nn.sigmoid(x)
return tf.math.multiply(x, inputs)
@tf_keras.utils.register_keras_serializable(package='Vision')
class BottleneckBlock3D(tf_keras.layers.Layer):
"""Creates a 3D bottleneck block."""
def __init__(self,
filters,
temporal_kernel_size,
temporal_strides,
spatial_strides,
stochastic_depth_drop_rate=0.0,
se_ratio=None,
use_self_gating=False,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
activation='relu',
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
"""Initializes a 3D bottleneck block with BN after convolutions.
Args:
filters: An `int` number of filters for the first two convolutions. Note
that the third and final convolution will use 4 times as many filters.
temporal_kernel_size: An `int` of kernel size for the temporal
convolutional layer.
temporal_strides: An `int` of ftemporal stride for the temporal
convolutional layer.
spatial_strides: An `int` of spatial stride for the spatial convolutional
layer.
stochastic_depth_drop_rate: A `float` or None. If not None, drop rate for
the stochastic depth layer.
se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
use_self_gating: A `bool` of whether to apply self-gating module or not.
kernel_initializer: A `str` of kernel_initializer for convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2d.
Default to None.
activation: A `str` name of the activation function.
use_sync_bn: A `bool`. If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
**kwargs: Additional keyword arguments to be passed.
"""
super(BottleneckBlock3D, self).__init__(**kwargs)
self._filters = filters
self._temporal_kernel_size = temporal_kernel_size
self._spatial_strides = spatial_strides
self._temporal_strides = temporal_strides
self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
self._use_self_gating = use_self_gating
self._se_ratio = se_ratio
self._use_sync_bn = use_sync_bn
self._activation = activation
self._kernel_initializer = kernel_initializer
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._norm = tf_keras.layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation_fn = tf_utils.get_activation(activation)
def build(self, input_shape):
self._shortcut_maxpool = tf_keras.layers.MaxPool3D(
pool_size=[1, 1, 1],
strides=[
self._temporal_strides, self._spatial_strides, self._spatial_strides
])
self._shortcut_conv = tf_keras.layers.Conv3D(
filters=4 * self._filters,
kernel_size=1,
strides=[
self._temporal_strides, self._spatial_strides, self._spatial_strides
],
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm0 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)
self._temporal_conv = tf_keras.layers.Conv3D(
filters=self._filters,
kernel_size=[self._temporal_kernel_size, 1, 1],
strides=[self._temporal_strides, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm1 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)
self._spatial_conv = tf_keras.layers.Conv3D(
filters=self._filters,
kernel_size=[1, 3, 3],
strides=[1, self._spatial_strides, self._spatial_strides],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm2 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)
self._expand_conv = tf_keras.layers.Conv3D(
filters=4 * self._filters,
kernel_size=[1, 1, 1],
strides=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm3 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)
if self._se_ratio and self._se_ratio > 0 and self._se_ratio <= 1:
self._squeeze_excitation = nn_layers.SqueezeExcitation(
in_filters=self._filters * 4,
out_filters=self._filters * 4,
se_ratio=self._se_ratio,
use_3d_input=True,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
else:
self._squeeze_excitation = None
if self._stochastic_depth_drop_rate:
self._stochastic_depth = nn_layers.StochasticDepth(
self._stochastic_depth_drop_rate)
else:
self._stochastic_depth = None
if self._use_self_gating:
self._self_gating = SelfGating(filters=4 * self._filters)
else:
self._self_gating = None
super(BottleneckBlock3D, self).build(input_shape)
def get_config(self):
config = {
'filters': self._filters,
'temporal_kernel_size': self._temporal_kernel_size,
'temporal_strides': self._temporal_strides,
'spatial_strides': self._spatial_strides,
'use_self_gating': self._use_self_gating,
'se_ratio': self._se_ratio,
'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
base_config = super(BottleneckBlock3D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, training=None):
in_filters = inputs.shape.as_list()[-1]
if in_filters == 4 * self._filters:
if self._temporal_strides == 1 and self._spatial_strides == 1:
shortcut = inputs
else:
shortcut = self._shortcut_maxpool(inputs)
else:
shortcut = self._shortcut_conv(inputs)
shortcut = self._norm0(shortcut)
x = self._temporal_conv(inputs)
x = self._norm1(x)
x = self._activation_fn(x)
x = self._spatial_conv(x)
x = self._norm2(x)
x = self._activation_fn(x)
x = self._expand_conv(x)
x = self._norm3(x)
# Apply self-gating, SE, stochastic depth.
if self._self_gating:
x = self._self_gating(x)
if self._squeeze_excitation:
x = self._squeeze_excitation(x)
if self._stochastic_depth:
x = self._stochastic_depth(x, training=training)
# Apply activation before additional modules.
x = self._activation_fn(x + shortcut)
return x
|