Spaces:
Sleeping
Sleeping
File size: 33,835 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn_blocks."""
from typing import Any, Iterable, Tuple
# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
def distribution_strategy_combinations() -> Iterable[Tuple[Any, ...]]:
"""Returns the combinations of end-to-end tests to run."""
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.cloud_tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],)
class NNBlocksTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(nn_blocks.ResidualBlock, 1, False, 0.0, None),
(nn_blocks.ResidualBlock, 2, True, 0.2, 0.25),
)
def test_residual_block_creation(self, block_fn, strides, use_projection,
stochastic_depth_drop_rate, se_ratio):
input_size = 128
filter_size = 256
inputs = tf_keras.Input(
shape=(input_size, input_size, filter_size), batch_size=1)
block = block_fn(
filter_size,
strides,
use_projection=use_projection,
se_ratio=se_ratio,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
)
features = block(inputs)
self.assertAllEqual(
[1, input_size // strides, input_size // strides, filter_size],
features.shape.as_list())
def test_layerscale_call(self):
# Set up test inputs
input_shape = (2, 3, 4)
init_values = 1e-4
inputs = tf.ones(input_shape, dtype=tf.float32)
# Instantiate LayerScale object
layer_scale = nn_blocks.LayerScale(init_values)
# Call LayerScale object on test inputs
output = layer_scale(inputs)
# Check output shape
expected_output_shape = input_shape
self.assertAllEqual(output.shape, expected_output_shape)
# Check that output values are correct
expected_output_values = init_values * np.ones(input_shape)
self.assertAllClose(
output.numpy(), expected_output_values, rtol=1e-5, atol=1e-5)
def test_layerscale_training(self):
# Verify that gamma values have changed from their initial values in one
# step forward pass.
# Set up test inputs
input_shape = (1, 3, 4)
init_values = 1e-4
inputs = tf.ones(input_shape, dtype=tf.float32)
targets = tf.ones(input_shape, dtype=tf.float32)
# Instantiate LayerScale object
layer_scale = nn_blocks.LayerScale(init_values)
# Define optimizer and loss function
optimizer = tf_keras.optimizers.Adam()
loss_fn = tf_keras.losses.MeanSquaredError()
# Train the model for one step
with tf.GradientTape() as tape:
predictions = layer_scale(inputs)
loss = loss_fn(targets, predictions)
grads = tape.gradient(loss, layer_scale.trainable_variables)
optimizer.apply_gradients(zip(grads, layer_scale.trainable_variables))
# Check that gamma values have changed
updated_gamma = layer_scale.gamma.numpy()[0, 0, 0]
self.assertNotEqual(updated_gamma, init_values)
@parameterized.parameters(
(nn_blocks.BottleneckBlock, 1, False, 0.0, None),
(nn_blocks.BottleneckBlock, 2, True, 0.2, 0.25),
)
def test_bottleneck_block_creation(self, block_fn, strides, use_projection,
stochastic_depth_drop_rate, se_ratio):
input_size = 128
filter_size = 256
inputs = tf_keras.Input(
shape=(input_size, input_size, filter_size * 4), batch_size=1)
block = block_fn(
filter_size,
strides,
use_projection=use_projection,
se_ratio=se_ratio,
stochastic_depth_drop_rate=stochastic_depth_drop_rate)
features = block(inputs)
self.assertAllEqual(
[1, input_size // strides, input_size // strides, filter_size * 4],
features.shape.as_list())
@parameterized.parameters(
(nn_blocks.InvertedBottleneckBlock, 1, 1, None, None),
(nn_blocks.InvertedBottleneckBlock, 6, 1, None, None),
(nn_blocks.InvertedBottleneckBlock, 1, 2, None, None),
(nn_blocks.InvertedBottleneckBlock, 1, 1, 0.2, None),
(nn_blocks.InvertedBottleneckBlock, 1, 1, None, 0.2),
)
def test_invertedbottleneck_block_creation(self, block_fn, expand_ratio,
strides, se_ratio,
stochastic_depth_drop_rate):
input_size = 128
in_filters = 24
out_filters = 40
inputs = tf_keras.Input(
shape=(input_size, input_size, in_filters), batch_size=1)
block = block_fn(
in_filters=in_filters,
out_filters=out_filters,
expand_ratio=expand_ratio,
strides=strides,
se_ratio=se_ratio,
stochastic_depth_drop_rate=stochastic_depth_drop_rate)
features = block(inputs)
self.assertAllEqual(
[1, input_size // strides, input_size // strides, out_filters],
features.shape.as_list())
@parameterized.parameters(
(nn_blocks.TuckerConvBlock, 1, 0.25, 0.25),
(nn_blocks.TuckerConvBlock, 2, 0.25, 0.25),
)
def test_tucker_conv_block(self, block_fn, strides, input_compression_ratio,
output_compression_ratio):
input_size = 128
in_filters = 24
out_filters = 24
inputs = tf_keras.Input(
shape=(input_size, input_size, in_filters), batch_size=1)
block = block_fn(
in_filters=in_filters,
out_filters=out_filters,
input_compression_ratio=input_compression_ratio,
output_compression_ratio=output_compression_ratio,
strides=strides)
features = block(inputs)
self.assertAllEqual(
[1, input_size // strides, input_size // strides, out_filters],
features.shape.as_list())
class ResidualInnerTest(parameterized.TestCase, tf.test.TestCase):
@combinations.generate(distribution_strategy_combinations())
def test_shape(self, distribution):
bsz, h, w, c = 8, 32, 32, 32
filters = 64
strides = 2
input_tensor = tf.random.uniform(shape=[bsz, h, w, c])
with distribution.scope():
test_layer = nn_blocks.ResidualInner(filters, strides)
output = test_layer(input_tensor)
expected_output_shape = [bsz, h // strides, w // strides, filters]
self.assertEqual(expected_output_shape, output.shape.as_list())
class BottleneckResidualInnerTest(parameterized.TestCase, tf.test.TestCase):
@combinations.generate(distribution_strategy_combinations())
def test_shape(self, distribution):
bsz, h, w, c = 8, 32, 32, 32
filters = 64
strides = 2
input_tensor = tf.random.uniform(shape=[bsz, h, w, c])
with distribution.scope():
test_layer = nn_blocks.BottleneckResidualInner(filters, strides)
output = test_layer(input_tensor)
expected_output_shape = [bsz, h // strides, w // strides, filters * 4]
self.assertEqual(expected_output_shape, output.shape.as_list())
class DepthwiseSeparableConvBlockTest(parameterized.TestCase, tf.test.TestCase):
@combinations.generate(distribution_strategy_combinations())
def test_shape(self, distribution):
batch_size, height, width, num_channels = 8, 32, 32, 32
num_filters = 64
strides = 2
input_tensor = tf.random.normal(
shape=[batch_size, height, width, num_channels])
with distribution.scope():
block = nn_blocks.DepthwiseSeparableConvBlock(
num_filters, strides=strides)
config_dict = block.get_config()
recreate_block = nn_blocks.DepthwiseSeparableConvBlock(**config_dict)
output_tensor = block(input_tensor)
expected_output_shape = [
batch_size, height // strides, width // strides, num_filters
]
self.assertEqual(output_tensor.shape.as_list(), expected_output_shape)
output_tensor = recreate_block(input_tensor)
self.assertEqual(output_tensor.shape.as_list(), expected_output_shape)
class ReversibleLayerTest(parameterized.TestCase, tf.test.TestCase):
@combinations.generate(distribution_strategy_combinations())
def test_downsampling_non_reversible_step(self, distribution):
bsz, h, w, c = 8, 32, 32, 32
filters = 64
strides = 2
input_tensor = tf.random.uniform(shape=[bsz, h, w, c])
with distribution.scope():
f = nn_blocks.ResidualInner(
filters=filters // 2, strides=strides, batch_norm_first=True)
g = nn_blocks.ResidualInner(
filters=filters // 2, strides=1, batch_norm_first=True)
test_layer = nn_blocks.ReversibleLayer(f, g)
test_layer.build(input_tensor.shape)
optimizer = tf_keras.optimizers.SGD(learning_rate=0.01)
@tf.function
def step_fn():
with tf.GradientTape() as tape:
output = test_layer(input_tensor, training=True)
grads = tape.gradient(output, test_layer.trainable_variables)
# Test applying gradients with optimizer works
optimizer.apply_gradients(zip(grads, test_layer.trainable_variables))
return output
replica_output = distribution.run(step_fn)
outputs = distribution.experimental_local_results(replica_output)
# Assert forward pass shape
expected_output_shape = [bsz, h // strides, w // strides, filters]
for output in outputs:
self.assertEqual(expected_output_shape, output.shape.as_list())
@combinations.generate(distribution_strategy_combinations())
def test_reversible_step(self, distribution):
# Reversible layers satisfy: (a) strides = 1 (b) in_filter = out_filter
bsz, h, w, c = 8, 32, 32, 32
filters = c
strides = 1
input_tensor = tf.random.uniform(shape=[bsz, h, w, c])
with distribution.scope():
f = nn_blocks.ResidualInner(
filters=filters // 2, strides=strides, batch_norm_first=False)
g = nn_blocks.ResidualInner(
filters=filters // 2, strides=1, batch_norm_first=False)
test_layer = nn_blocks.ReversibleLayer(f, g)
test_layer(input_tensor, training=False) # init weights
optimizer = tf_keras.optimizers.SGD(learning_rate=0.01)
@tf.function
def step_fn():
with tf.GradientTape() as tape:
output = test_layer(input_tensor, training=True)
grads = tape.gradient(output, test_layer.trainable_variables)
# Test applying gradients with optimizer works
optimizer.apply_gradients(zip(grads, test_layer.trainable_variables))
return output
@tf.function
def fwd():
test_layer(input_tensor)
distribution.run(fwd) # Initialize variables
prev_variables = tf.identity_n(test_layer.trainable_variables)
replica_output = distribution.run(step_fn)
outputs = distribution.experimental_local_results(replica_output)
# Assert variables values have changed values
for v0, v1 in zip(prev_variables, test_layer.trainable_variables):
self.assertNotAllEqual(v0, v1)
# Assert forward pass shape
expected_output_shape = [bsz, h // strides, w // strides, filters]
for output in outputs:
self.assertEqual(expected_output_shape, output.shape.as_list())
@combinations.generate(distribution_strategy_combinations())
def test_manual_gradients_correctness(self, distribution):
bsz, h, w, c = 8, 32, 32, 32
filters = c
strides = 1
input_tensor = tf.random.uniform(shape=[bsz, h, w, c * 4]) # bottleneck
with distribution.scope():
f_manual = nn_blocks.BottleneckResidualInner(
filters=filters // 2, strides=strides, batch_norm_first=False)
g_manual = nn_blocks.BottleneckResidualInner(
filters=filters // 2, strides=1, batch_norm_first=False)
manual_grad_layer = nn_blocks.ReversibleLayer(f_manual, g_manual)
manual_grad_layer(input_tensor, training=False) # init weights
f_auto = nn_blocks.BottleneckResidualInner(
filters=filters // 2, strides=strides, batch_norm_first=False)
g_auto = nn_blocks.BottleneckResidualInner(
filters=filters // 2, strides=1, batch_norm_first=False)
auto_grad_layer = nn_blocks.ReversibleLayer(
f_auto, g_auto, manual_grads=False)
auto_grad_layer(input_tensor) # init weights
# Clone all weights (tf_keras.layers.Layer has no .clone())
auto_grad_layer._f.set_weights(manual_grad_layer._f.get_weights())
auto_grad_layer._g.set_weights(manual_grad_layer._g.get_weights())
@tf.function
def manual_fn():
with tf.GradientTape() as tape:
output = manual_grad_layer(input_tensor, training=True)
grads = tape.gradient(output, manual_grad_layer.trainable_variables)
return grads
@tf.function
def auto_fn():
with tf.GradientTape() as tape:
output = auto_grad_layer(input_tensor, training=True)
grads = tape.gradient(output, auto_grad_layer.trainable_variables)
return grads
manual_grads = distribution.run(manual_fn)
auto_grads = distribution.run(auto_fn)
# Assert gradients calculated manually are close to that from autograd
for manual_grad, auto_grad in zip(manual_grads, auto_grads):
self.assertAllClose(
distribution.experimental_local_results(manual_grad),
distribution.experimental_local_results(auto_grad),
atol=5e-3,
rtol=5e-3)
# Verify that BN moving mean and variance is correct.
for manual_var, auto_var in zip(manual_grad_layer.non_trainable_variables,
auto_grad_layer.non_trainable_variables):
self.assertAllClose(manual_var, auto_var)
# Test class that wraps a standard attention layer. If this layer is called
# at any point, the list passed to the config object will be filled with a
# boolean 'True'. We register this class as a Keras serializable so we can
# test serialization below.
@tf_keras.utils.register_keras_serializable(package='TestOnlyAttention')
class ValidatedAttentionLayer(nn_layers.MultiHeadAttention):
def __init__(self, call_list, **kwargs):
super(ValidatedAttentionLayer, self).__init__(**kwargs)
self.list = call_list
def call(
self,
query,
value,
attention_mask=None,
return_attention_scores=False,
):
self.list.append(True)
return super(ValidatedAttentionLayer, self).call(
query,
value,
attention_mask=attention_mask,
return_attention_scores=return_attention_scores)
def get_config(self):
config = super(ValidatedAttentionLayer, self).get_config()
config['call_list'] = self.list
return config
# Test class implements a simple feedforward layer. If this layer is called
# at any point, the list passed to the config object will be filled with a
# boolean 'True'. We register this class as a Keras serializable so we can
# test serialization below.
@tf_keras.utils.register_keras_serializable(package='TestOnlyFeedforward')
class ValidatedFeedforwardLayer(tf_keras.layers.Layer):
def __init__(self, call_list, activation, **kwargs):
super(ValidatedFeedforwardLayer, self).__init__(**kwargs)
self.list = call_list
self.activation = activation
def build(self, input_shape):
hidden_size = input_shape[-1]
self._feedforward_dense = tf_keras.layers.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
activation=self.activation,
name='feedforward')
def call(self, inputs):
self.list.append(True)
return self._feedforward_dense(inputs)
def get_config(self):
config = super(ValidatedFeedforwardLayer, self).get_config()
config['call_list'] = []
config['activation'] = self.activation
return config
class TransformerLayerTest(tf.test.TestCase, parameterized.TestCase):
def tearDown(self):
super(TransformerLayerTest, self).tearDown()
tf_keras.mixed_precision.set_global_policy('float32')
@parameterized.parameters(None, 2)
def test_layer_creation(self, max_attention_inference_parallelism):
sequence_length = 21
width = 80
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': []
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
max_attention_inference_parallelism=max_attention_inference_parallelism,
)
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
call_list = test_layer._attention_layer.get_config()['call_list']
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
def test_layer_creation_with_feedforward_cls(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
}
feedforward_call_list = []
feedforward_layer_cfg = {
'activation': 'relu',
'call_list': feedforward_call_list,
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
feedforward_cls=ValidatedFeedforwardLayer,
feedforward_cfg=feedforward_layer_cfg,
num_attention_heads=10,
inner_dim=None,
inner_activation=None)
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
self.assertNotEmpty(feedforward_call_list)
self.assertTrue(feedforward_call_list[0],
"The passed layer class wasn't instantiated.")
def test_layer_creation_with_mask(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu')
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
@parameterized.parameters(None, 2)
def test_layer_invocation(self, max_attention_inference_parallelism):
sequence_length = 21
width = 80
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': [],
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
max_attention_inference_parallelism=max_attention_inference_parallelism)
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# Create a model from the test layer.
model = tf_keras.Model(data_tensor, output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, width))
_ = model.predict(input_data)
call_list = test_layer._attention_layer.get_config()['call_list']
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
def test_layer_invocation_with_feedforward_cls(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
}
feedforward_call_list = []
feedforward_layer_cfg = {
'activation': 'relu',
'call_list': feedforward_call_list,
}
feedforward_layer = ValidatedFeedforwardLayer(**feedforward_layer_cfg)
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
feedforward_cls=feedforward_layer,
num_attention_heads=10,
inner_dim=None,
inner_activation=None)
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
self.assertNotEmpty(feedforward_call_list)
self.assertTrue(feedforward_call_list[0],
"The passed layer class wasn't instantiated.")
def test_layer_invocation_with_mask(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu')
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
def test_layer_invocation_with_float16_dtype(self):
tf_keras.mixed_precision.set_global_policy('mixed_float16')
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu')
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = (10 * np.random.random_sample(
(batch_size, sequence_length, width)))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0], "The passed layer class wasn't instantiated.")
def test_transform_with_initializer(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list())
# If call_list[0] exists and is True, the passed layer class was
# instantiated from the given config properly.
self.assertNotEmpty(call_list)
self.assertTrue(call_list[0])
def test_layer_restoration_from_config(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
'name': 'test_layer',
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu')
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
pre_serialization_output = model.predict([input_data, mask_data])
# Serialize the model config. Pass the serialized data through json to
# ensure that we can serialize this layer to disk.
serialized_data = model.get_config()
# Create a new model from the old config, and copy the weights. These models
# should have identical outputs.
new_model = tf_keras.Model.from_config(serialized_data)
new_model.set_weights(model.get_weights())
output = new_model.predict([input_data, mask_data])
self.assertAllClose(pre_serialization_output, output)
# If the layer was configured correctly, it should have a list attribute
# (since it should have the custom class and config passed to it).
new_model.summary()
new_call_list = new_model.get_layer(
name='transformer_scaffold')._attention_layer.list
self.assertNotEmpty(new_call_list)
self.assertTrue(new_call_list[0],
"The passed layer class wasn't instantiated.")
def test_layer_with_feedforward_cls_restoration_from_config(self):
sequence_length = 21
width = 80
call_list = []
attention_layer_cfg = {
'num_heads': 10,
'key_dim': 8,
'call_list': call_list,
'name': 'test_layer',
}
feedforward_call_list = []
feedforward_layer_cfg = {
'activation': 'relu',
'call_list': feedforward_call_list,
}
test_layer = nn_blocks.TransformerScaffold(
attention_cls=ValidatedAttentionLayer,
attention_cfg=attention_layer_cfg,
feedforward_cls=ValidatedFeedforwardLayer,
feedforward_cfg=feedforward_layer_cfg,
num_attention_heads=10,
inner_dim=None,
inner_activation=None)
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
pre_serialization_output = model.predict([input_data, mask_data])
serialized_data = model.get_config()
# Create a new model from the old config, and copy the weights. These models
# should have identical outputs.
new_model = tf_keras.Model.from_config(serialized_data)
new_model.set_weights(model.get_weights())
output = new_model.predict([input_data, mask_data])
self.assertAllClose(pre_serialization_output, output)
# If the layer was configured correctly, it should have a list attribute
# (since it should have the custom class and config passed to it).
new_model.summary()
new_call_list = new_model.get_layer(
name='transformer_scaffold')._attention_layer.list
self.assertNotEmpty(new_call_list)
self.assertTrue(new_call_list[0],
"The passed layer class wasn't instantiated.")
new_feedforward_call_list = new_model.get_layer(
name='transformer_scaffold')._feedforward_block.list
self.assertNotEmpty(new_feedforward_call_list)
self.assertTrue(new_feedforward_call_list[0],
"The passed layer class wasn't instantiated.")
if __name__ == '__main__':
tf.test.main()
|