File size: 14,418 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of ROI generator."""
from typing import Optional, Mapping
# Import libraries
import tensorflow as tf, tf_keras

from official.vision.ops import box_ops
from official.vision.ops import nms


def _multilevel_propose_rois(raw_boxes: Mapping[str, tf.Tensor],
                             raw_scores: Mapping[str, tf.Tensor],
                             anchor_boxes: Mapping[str, tf.Tensor],
                             image_shape: tf.Tensor,
                             pre_nms_top_k: int = 2000,
                             pre_nms_score_threshold: float = 0.0,
                             pre_nms_min_size_threshold: float = 0.0,
                             nms_iou_threshold: float = 0.7,
                             num_proposals: int = 1000,
                             use_batched_nms: bool = False,
                             decode_boxes: bool = True,
                             clip_boxes: bool = True,
                             apply_sigmoid_to_score: bool = True):
  """Proposes RoIs given a group of candidates from different FPN levels.

  The following describes the steps:
    1. For each individual level:
      a. Apply sigmoid transform if specified.
      b. Decode boxes if specified.
      c. Clip boxes if specified.
      d. Filter small boxes and those fall outside image if specified.
      e. Apply pre-NMS filtering including pre-NMS top k and score thresholding.
      f. Apply NMS.
    2. Aggregate post-NMS boxes from each level.
    3. Apply an overall top k to generate the final selected RoIs.

  Args:
    raw_boxes: A `dict` with keys representing FPN levels and values
      representing box tenors of shape
      [batch_size, feature_h, feature_w, num_anchors * 4].
    raw_scores: A `dict` with keys representing FPN levels and values
      representing logit tensors of shape
      [batch_size, feature_h, feature_w, num_anchors].
    anchor_boxes: A `dict` with keys representing FPN levels and values
      representing anchor box tensors of shape
      [batch_size, feature_h * feature_w * num_anchors, 4].
    image_shape: A `tf.Tensor` of shape [batch_size, 2] where the last dimension
      are [height, width] of the scaled image.
    pre_nms_top_k: An `int` of top scoring RPN proposals *per level* to keep
      before applying NMS. Default: 2000.
    pre_nms_score_threshold: A `float` between 0 and 1 representing the minimal
      box score to keep before applying NMS. This is often used as a
      pre-filtering step for better performance. Default: 0, no filtering is
      applied.
    pre_nms_min_size_threshold: A `float` representing the minimal box size in
      each side (w.r.t. the scaled image) to keep before applying NMS. This is
      often used as a pre-filtering step for better performance. Default: 0, no
      filtering is applied.
    nms_iou_threshold: A `float` between 0 and 1 representing the IoU threshold
      used for NMS. If 0.0, no NMS is applied. Default: 0.7.
    num_proposals: An `int` of top scoring RPN proposals *in total* to keep
      after applying NMS. Default: 1000.
    use_batched_nms: A `bool` indicating whether NMS is applied in batch using
      `tf.image.combined_non_max_suppression`. Currently only available in
      CPU/GPU. Default is False.
    decode_boxes: A `bool` indicating whether `raw_boxes` needs to be decoded
      using `anchor_boxes`. If False, use `raw_boxes` directly and ignore
      `anchor_boxes`. Default is True.
    clip_boxes: A `bool` indicating whether boxes are first clipped to the
      scaled image size before appliying NMS. If False, no clipping is applied
      and `image_shape` is ignored. Default is True.
    apply_sigmoid_to_score: A `bool` indicating whether apply sigmoid to
      `raw_scores` before applying NMS. Default is True.

  Returns:
    selected_rois: A `tf.Tensor` of shape [batch_size, num_proposals, 4],
      representing the box coordinates of the selected proposals w.r.t. the
      scaled image.
    selected_roi_scores: A `tf.Tensor` of shape [batch_size, num_proposals, 1],
      representing the scores of the selected proposals.
  """
  with tf.name_scope('multilevel_propose_rois'):
    rois = []
    roi_scores = []
    image_shape = tf.expand_dims(image_shape, axis=1)
    for level in sorted(raw_scores.keys()):
      with tf.name_scope('level_%s' % level):
        _, feature_h, feature_w, num_anchors_per_location = (
            raw_scores[level].get_shape().as_list())

        num_boxes = feature_h * feature_w * num_anchors_per_location
        this_level_scores = tf.reshape(raw_scores[level], [-1, num_boxes])
        this_level_boxes = tf.reshape(raw_boxes[level], [-1, num_boxes, 4])
        this_level_anchors = tf.cast(
            tf.reshape(anchor_boxes[level], [-1, num_boxes, 4]),
            dtype=this_level_scores.dtype)

        if apply_sigmoid_to_score:
          this_level_scores = tf.sigmoid(this_level_scores)

        if decode_boxes:
          this_level_boxes = box_ops.decode_boxes(
              this_level_boxes, this_level_anchors)
        if clip_boxes:
          this_level_boxes = box_ops.clip_boxes(
              this_level_boxes, image_shape)

        if pre_nms_min_size_threshold > 0.0:
          this_level_boxes, this_level_scores = box_ops.filter_boxes(
              this_level_boxes,
              this_level_scores,
              image_shape,
              pre_nms_min_size_threshold)

        this_level_pre_nms_top_k = min(num_boxes, pre_nms_top_k)
        this_level_post_nms_top_k = min(num_boxes, num_proposals)
        if nms_iou_threshold > 0.0:
          if use_batched_nms:
            this_level_rois, this_level_roi_scores, _, _ = (
                tf.image.combined_non_max_suppression(
                    tf.expand_dims(this_level_boxes, axis=2),
                    tf.expand_dims(this_level_scores, axis=-1),
                    max_output_size_per_class=this_level_pre_nms_top_k,
                    max_total_size=this_level_post_nms_top_k,
                    iou_threshold=nms_iou_threshold,
                    score_threshold=pre_nms_score_threshold,
                    pad_per_class=False,
                    clip_boxes=False))
          else:
            if pre_nms_score_threshold > 0.0:
              this_level_boxes, this_level_scores = (
                  box_ops.filter_boxes_by_scores(
                      this_level_boxes,
                      this_level_scores,
                      pre_nms_score_threshold))
            this_level_boxes, this_level_scores = box_ops.top_k_boxes(
                this_level_boxes, this_level_scores, k=this_level_pre_nms_top_k)
            this_level_roi_scores, this_level_rois = (
                nms.sorted_non_max_suppression_padded(
                    this_level_scores,
                    this_level_boxes,
                    max_output_size=this_level_post_nms_top_k,
                    iou_threshold=nms_iou_threshold))
        else:
          this_level_rois, this_level_roi_scores = box_ops.top_k_boxes(
              this_level_boxes,
              this_level_scores,
              k=this_level_post_nms_top_k)

        rois.append(this_level_rois)
        roi_scores.append(this_level_roi_scores)

    all_rois = tf.concat(rois, axis=1)
    all_roi_scores = tf.concat(roi_scores, axis=1)

    with tf.name_scope('top_k_rois'):
      _, num_valid_rois = all_roi_scores.get_shape().as_list()
      overall_top_k = min(num_valid_rois, num_proposals)

      selected_rois, selected_roi_scores = box_ops.top_k_boxes(
          all_rois, all_roi_scores, k=overall_top_k)

    return selected_rois, selected_roi_scores


@tf_keras.utils.register_keras_serializable(package='Vision')
class MultilevelROIGenerator(tf_keras.layers.Layer):
  """Proposes RoIs for the second stage processing."""

  def __init__(self,
               pre_nms_top_k: int = 2000,
               pre_nms_score_threshold: float = 0.0,
               pre_nms_min_size_threshold: float = 0.0,
               nms_iou_threshold: float = 0.7,
               num_proposals: int = 1000,
               test_pre_nms_top_k: int = 1000,
               test_pre_nms_score_threshold: float = 0.0,
               test_pre_nms_min_size_threshold: float = 0.0,
               test_nms_iou_threshold: float = 0.7,
               test_num_proposals: int = 1000,
               use_batched_nms: bool = False,
               **kwargs):
    """Initializes a ROI generator.

    The ROI generator transforms the raw predictions from RPN to ROIs.

    Args:
      pre_nms_top_k: An `int` of the number of top scores proposals to be kept
        before applying NMS.
      pre_nms_score_threshold: A `float` of the score threshold to apply before
        applying NMS. Proposals whose scores are below this threshold are
        thrown away.
      pre_nms_min_size_threshold: A `float` of the threshold of each side of the
        box (w.r.t. the scaled image). Proposals whose sides are below this
        threshold are thrown away.
      nms_iou_threshold: A `float` in [0, 1], the NMS IoU threshold.
      num_proposals: An `int` of the final number of proposals to generate.
      test_pre_nms_top_k: An `int` of the number of top scores proposals to be
        kept before applying NMS in testing.
      test_pre_nms_score_threshold: A `float` of the score threshold to apply
        before applying NMS in testing. Proposals whose scores are below this
        threshold are thrown away.
      test_pre_nms_min_size_threshold: A `float` of the threshold of each side
        of the box (w.r.t. the scaled image) in testing. Proposals whose sides
        are below this threshold are thrown away.
      test_nms_iou_threshold: A `float` in [0, 1] of the NMS IoU threshold in
        testing.
      test_num_proposals: An `int` of the final number of proposals to generate
        in testing.
      use_batched_nms: A `bool` of whether or not use
        `tf.image.combined_non_max_suppression`.
      **kwargs: Additional keyword arguments passed to Layer.
    """
    self._config_dict = {
        'pre_nms_top_k': pre_nms_top_k,
        'pre_nms_score_threshold': pre_nms_score_threshold,
        'pre_nms_min_size_threshold': pre_nms_min_size_threshold,
        'nms_iou_threshold': nms_iou_threshold,
        'num_proposals': num_proposals,
        'test_pre_nms_top_k': test_pre_nms_top_k,
        'test_pre_nms_score_threshold': test_pre_nms_score_threshold,
        'test_pre_nms_min_size_threshold': test_pre_nms_min_size_threshold,
        'test_nms_iou_threshold': test_nms_iou_threshold,
        'test_num_proposals': test_num_proposals,
        'use_batched_nms': use_batched_nms,
    }
    super(MultilevelROIGenerator, self).__init__(**kwargs)

  def call(self,
           raw_boxes: Mapping[str, tf.Tensor],
           raw_scores: Mapping[str, tf.Tensor],
           anchor_boxes: Mapping[str, tf.Tensor],
           image_shape: tf.Tensor,
           training: Optional[bool] = None):
    """Proposes RoIs given a group of candidates from different FPN levels.

    The following describes the steps:
      1. For each individual level:
        a. Apply sigmoid transform if specified.
        b. Decode boxes if specified.
        c. Clip boxes if specified.
        d. Filter small boxes and those fall outside image if specified.
        e. Apply pre-NMS filtering including pre-NMS top k and score
           thresholding.
        f. Apply NMS.
      2. Aggregate post-NMS boxes from each level.
      3. Apply an overall top k to generate the final selected RoIs.

    Args:
      raw_boxes: A `dict` with keys representing FPN levels and values
        representing box tenors of shape
        [batch, feature_h, feature_w, num_anchors * 4].
      raw_scores: A `dict` with keys representing FPN levels and values
        representing logit tensors of shape
        [batch, feature_h, feature_w, num_anchors].
      anchor_boxes: A `dict` with keys representing FPN levels and values
        representing anchor box tensors of shape
        [batch, feature_h * feature_w * num_anchors, 4].
      image_shape: A `tf.Tensor` of shape [batch, 2] where the last dimension
        are [height, width] of the scaled image.
      training: A `bool` that indicates whether it is in training mode.

    Returns:
      roi_boxes: A `tf.Tensor` of shape [batch, num_proposals, 4], the proposed
        ROIs in the scaled image coordinate.
      roi_scores: A `tf.Tensor` of shape [batch, num_proposals], scores of the
        proposed ROIs.
    """
    roi_boxes, roi_scores = _multilevel_propose_rois(
        raw_boxes,
        raw_scores,
        anchor_boxes,
        image_shape,
        pre_nms_top_k=(
            self._config_dict['pre_nms_top_k'] if training
            else self._config_dict['test_pre_nms_top_k']),
        pre_nms_score_threshold=(
            self._config_dict['pre_nms_score_threshold'] if training
            else self._config_dict['test_pre_nms_score_threshold']),
        pre_nms_min_size_threshold=(
            self._config_dict['pre_nms_min_size_threshold'] if training
            else self._config_dict['test_pre_nms_min_size_threshold']),
        nms_iou_threshold=(
            self._config_dict['nms_iou_threshold'] if training
            else self._config_dict['test_nms_iou_threshold']),
        num_proposals=(
            self._config_dict['num_proposals'] if training
            else self._config_dict['test_num_proposals']),
        use_batched_nms=self._config_dict['use_batched_nms'],
        decode_boxes=True,
        clip_boxes=True,
        apply_sigmoid_to_score=True)
    return roi_boxes, roi_scores

  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)