Spaces:
Sleeping
Sleeping
File size: 10,006 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of ROI sampler."""
from typing import Optional, Tuple, Union
# Import libraries
import tensorflow as tf, tf_keras
from official.vision.modeling.layers import box_sampler
from official.vision.ops import box_matcher
from official.vision.ops import iou_similarity
from official.vision.ops import target_gather
# The return type can be a tuple of 4 or 5 tf.Tensor.
ROISamplerReturnType = Union[
Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor],
Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]]
@tf_keras.utils.register_keras_serializable(package='Vision')
class ROISampler(tf_keras.layers.Layer):
"""Samples ROIs and assigns targets to the sampled ROIs."""
def __init__(self,
mix_gt_boxes: bool = True,
num_sampled_rois: int = 512,
foreground_fraction: float = 0.25,
foreground_iou_threshold: float = 0.5,
background_iou_high_threshold: float = 0.5,
background_iou_low_threshold: float = 0,
skip_subsampling: bool = False,
**kwargs):
"""Initializes a ROI sampler.
Args:
mix_gt_boxes: A `bool` of whether to mix the groundtruth boxes with
proposed ROIs.
num_sampled_rois: An `int` of the number of sampled ROIs per image.
foreground_fraction: A `float` in [0, 1], what percentage of proposed ROIs
should be sampled from the foreground boxes.
foreground_iou_threshold: A `float` that represents the IoU threshold for
a box to be considered as positive (if >= `foreground_iou_threshold`).
background_iou_high_threshold: A `float` that represents the IoU threshold
for a box to be considered as negative (if overlap in
[`background_iou_low_threshold`, `background_iou_high_threshold`]).
background_iou_low_threshold: A `float` that represents the IoU threshold
for a box to be considered as negative (if overlap in
[`background_iou_low_threshold`, `background_iou_high_threshold`])
skip_subsampling: a bool that determines if we want to skip the sampling
procedure than balances the fg/bg classes. Used for upper frcnn layers
in cascade RCNN.
**kwargs: Additional keyword arguments passed to Layer.
"""
self._config_dict = {
'mix_gt_boxes': mix_gt_boxes,
'num_sampled_rois': num_sampled_rois,
'foreground_fraction': foreground_fraction,
'foreground_iou_threshold': foreground_iou_threshold,
'background_iou_high_threshold': background_iou_high_threshold,
'background_iou_low_threshold': background_iou_low_threshold,
'skip_subsampling': skip_subsampling,
}
self._sim_calc = iou_similarity.IouSimilarity()
self._box_matcher = box_matcher.BoxMatcher(
thresholds=[
background_iou_low_threshold, background_iou_high_threshold,
foreground_iou_threshold
],
indicators=[-3, -1, -2, 1])
self._target_gather = target_gather.TargetGather()
self._sampler = box_sampler.BoxSampler(
num_sampled_rois, foreground_fraction)
super().__init__(**kwargs)
def call(
self,
boxes: tf.Tensor,
gt_boxes: tf.Tensor,
gt_classes: tf.Tensor,
gt_outer_boxes: Optional[tf.Tensor] = None) -> ROISamplerReturnType:
"""Assigns the proposals with groundtruth classes and performs subsmpling.
Given `proposed_boxes`, `gt_boxes`, and `gt_classes`, the function uses the
following algorithm to generate the final `num_samples_per_image` RoIs.
1. Calculates the IoU between each proposal box and each gt_boxes.
2. Assigns each proposed box with a groundtruth class and box by choosing
the largest IoU overlap.
3. Samples `num_samples_per_image` boxes from all proposed boxes, and
returns box_targets, class_targets, and RoIs.
Args:
boxes: A `tf.Tensor` of shape of [batch_size, N, 4]. N is the number of
proposals before groundtruth assignment. The last dimension is the
box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax]
format.
gt_boxes: A `tf.Tensor` of shape of [batch_size, MAX_NUM_INSTANCES, 4].
The coordinates of gt_boxes are in the pixel coordinates of the scaled
image. This tensor might have padding of values -1 indicating the
invalid box coordinates.
gt_classes: A `tf.Tensor` with a shape of [batch_size, MAX_NUM_INSTANCES].
This tensor might have paddings with values of -1 indicating the invalid
classes.
gt_outer_boxes: A `tf.Tensor` of shape of [batch_size, MAX_NUM_INSTANCES,
4]. The corrdinates of gt_outer_boxes are in the pixel coordinates of
the scaled image. This tensor might have padding of values -1 indicating
the invalid box coordinates. Ignored if not provided.
Returns:
sampled_rois: A `tf.Tensor` of shape of [batch_size, K, 4], representing
the coordinates of the sampled RoIs, where K is the number of the
sampled RoIs, i.e. K = num_samples_per_image.
sampled_gt_boxes: A `tf.Tensor` of shape of [batch_size, K, 4], storing
the box coordinates of the matched groundtruth boxes of the samples
RoIs.
sampled_gt_outer_boxes: A `tf.Tensor` of shape of [batch_size, K, 4],
storing the box coordinates of the matched groundtruth outer boxes of
the samples RoIs. This field is missing if gt_outer_boxes is None.
sampled_gt_classes: A `tf.Tensor` of shape of [batch_size, K], storing the
classes of the matched groundtruth boxes of the sampled RoIs.
sampled_gt_indices: A `tf.Tensor` of shape of [batch_size, K], storing the
indices of the sampled groudntruth boxes in the original `gt_boxes`
tensor, i.e.,
gt_boxes[sampled_gt_indices[:, i]] = sampled_gt_boxes[:, i].
"""
gt_boxes = tf.cast(gt_boxes, dtype=boxes.dtype)
if self._config_dict['mix_gt_boxes']:
boxes = tf.concat([boxes, gt_boxes], axis=1)
boxes_invalid_mask = tf.less(
tf.reduce_max(boxes, axis=-1, keepdims=True), 0.0)
gt_invalid_mask = tf.less(
tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0)
similarity_matrix = self._sim_calc(boxes, gt_boxes, boxes_invalid_mask,
gt_invalid_mask)
matched_gt_indices, match_indicators = self._box_matcher(similarity_matrix)
positive_matches = tf.greater_equal(match_indicators, 0)
negative_matches = tf.equal(match_indicators, -1)
ignored_matches = tf.equal(match_indicators, -2)
invalid_matches = tf.equal(match_indicators, -3)
background_mask = tf.expand_dims(
tf.logical_or(negative_matches, invalid_matches), -1)
gt_classes = tf.expand_dims(gt_classes, axis=-1)
matched_gt_classes = self._target_gather(gt_classes, matched_gt_indices,
background_mask)
matched_gt_classes = tf.where(background_mask,
tf.zeros_like(matched_gt_classes),
matched_gt_classes)
matched_gt_boxes = self._target_gather(gt_boxes, matched_gt_indices,
tf.tile(background_mask, [1, 1, 4]))
matched_gt_boxes = tf.where(background_mask,
tf.zeros_like(matched_gt_boxes),
matched_gt_boxes)
if gt_outer_boxes is not None:
matched_gt_outer_boxes = self._target_gather(
gt_outer_boxes, matched_gt_indices, tf.tile(background_mask,
[1, 1, 4]))
matched_gt_outer_boxes = tf.where(background_mask,
tf.zeros_like(matched_gt_outer_boxes),
matched_gt_outer_boxes)
matched_gt_indices = tf.where(
tf.squeeze(background_mask, -1), -tf.ones_like(matched_gt_indices),
matched_gt_indices)
if self._config_dict['skip_subsampling']:
matched_gt_classes = tf.squeeze(matched_gt_classes, axis=-1)
if gt_outer_boxes is None:
return (boxes, matched_gt_boxes, matched_gt_classes, matched_gt_indices)
return (boxes, matched_gt_boxes, matched_gt_outer_boxes,
matched_gt_classes, matched_gt_indices)
sampled_indices = self._sampler(
positive_matches, negative_matches, ignored_matches)
sampled_rois = self._target_gather(boxes, sampled_indices)
sampled_gt_boxes = self._target_gather(matched_gt_boxes, sampled_indices)
sampled_gt_classes = tf.squeeze(self._target_gather(
matched_gt_classes, sampled_indices), axis=-1)
sampled_gt_indices = tf.squeeze(self._target_gather(
tf.expand_dims(matched_gt_indices, -1), sampled_indices), axis=-1)
if gt_outer_boxes is None:
return (sampled_rois, sampled_gt_boxes, sampled_gt_classes,
sampled_gt_indices)
sampled_gt_outer_boxes = self._target_gather(matched_gt_outer_boxes,
sampled_indices)
return (sampled_rois, sampled_gt_boxes, sampled_gt_outer_boxes,
sampled_gt_classes, sampled_gt_indices)
def get_config(self):
return self._config_dict
@classmethod
def from_config(cls, config):
return cls(**config)
|