Spaces:
Sleeping
Sleeping
File size: 19,463 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for autoaugment."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import augment
def get_dtype_test_cases():
return [
('uint8', tf.uint8),
('int32', tf.int32),
('float16', tf.float16),
('float32', tf.float32),
]
@parameterized.named_parameters(get_dtype_test_cases())
class TransformsTest(parameterized.TestCase, tf.test.TestCase):
"""Basic tests for fundamental transformations."""
def test_to_from_4d(self, dtype):
for shape in [(10, 10), (10, 10, 10), (10, 10, 10, 10)]:
original_ndims = len(shape)
image = tf.zeros(shape, dtype=dtype)
image_4d = augment.to_4d(image)
self.assertEqual(4, tf.rank(image_4d))
self.assertAllEqual(image, augment.from_4d(image_4d, original_ndims))
def test_transform(self, dtype):
image = tf.constant([[1, 2], [3, 4]], dtype=dtype)
self.assertAllEqual(
augment.transform(image, transforms=[1] * 8), [[4, 4], [4, 4]])
def test_translate(self, dtype):
image = tf.constant(
[[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1]], dtype=dtype)
translations = [-1, -1]
translated = augment.translate(image=image, translations=translations)
expected = [[1, 0, 1, 1], [0, 1, 0, 0], [1, 0, 1, 1], [1, 0, 1, 1]]
self.assertAllEqual(translated, expected)
def test_translate_shapes(self, dtype):
translation = [0, 0]
for shape in [(3, 3), (5, 5), (224, 224, 3)]:
image = tf.zeros(shape, dtype=dtype)
self.assertAllEqual(image, augment.translate(image, translation))
def test_translate_invalid_translation(self, dtype):
image = tf.zeros((1, 1), dtype=dtype)
invalid_translation = [[[1, 1]]]
with self.assertRaisesRegex(TypeError, 'rank 1 or 2'):
_ = augment.translate(image, invalid_translation)
def test_rotate(self, dtype):
image = tf.reshape(tf.cast(tf.range(9), dtype), (3, 3))
rotation = 90.
transformed = augment.rotate(image=image, degrees=rotation)
expected = [[2, 5, 8], [1, 4, 7], [0, 3, 6]]
self.assertAllEqual(transformed, expected)
def test_rotate_shapes(self, dtype):
degrees = 0.
for shape in [(3, 3), (5, 5), (224, 224, 3)]:
image = tf.zeros(shape, dtype=dtype)
self.assertAllEqual(image, augment.rotate(image, degrees))
def test_random_cutout_video(self, dtype):
for num_channels in (1, 2, 3):
video = tf.ones((2, 2, 2, num_channels), dtype=dtype)
video = augment.cutout_video(video)
num_zeros = np.sum(video == 0)
self.assertGreater(num_zeros, 0)
def test_cutout_video_with_fixed_shape(self, dtype):
tf.random.set_seed(0)
video = tf.ones((10, 10, 10, 1), dtype=dtype)
video = augment.cutout_video(video, mask_shape=tf.constant([2, 2, 2]))
num_zeros = np.sum(video == 0)
self.assertEqual(num_zeros, 8)
class AutoaugmentTest(tf.test.TestCase, parameterized.TestCase):
AVAILABLE_POLICIES = [
'v0',
'test',
'simple',
'reduced_cifar10',
'svhn',
'reduced_imagenet',
'detection_v0',
'vit',
]
def test_autoaugment(self):
"""Smoke test to be sure there are no syntax errors."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
for policy in self.AVAILABLE_POLICIES:
augmenter = augment.AutoAugment(augmentation_name=policy)
aug_image = augmenter.distort(image)
self.assertEqual((224, 224, 3), aug_image.shape)
def test_autoaugment_with_bboxes(self):
"""Smoke test to be sure there are no syntax errors with bboxes."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
bboxes = tf.ones((2, 4), dtype=tf.float32)
for policy in self.AVAILABLE_POLICIES:
augmenter = augment.AutoAugment(augmentation_name=policy)
aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)
self.assertEqual((224, 224, 3), aug_image.shape)
self.assertEqual((2, 4), aug_bboxes.shape)
def test_randaug(self):
"""Smoke test to be sure there are no syntax errors."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
augmenter = augment.RandAugment()
aug_image = augmenter.distort(image)
self.assertEqual((224, 224, 3), aug_image.shape)
def test_randaug_with_bboxes(self):
"""Smoke test to be sure there are no syntax errors with bboxes."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
bboxes = tf.ones((2, 4), dtype=tf.float32)
augmenter = augment.RandAugment()
aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)
self.assertEqual((224, 224, 3), aug_image.shape)
self.assertEqual((2, 4), aug_bboxes.shape)
def test_randaug_build_for_detection(self):
"""Smoke test to be sure there are no syntax errors built for detection."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
bboxes = tf.ones((2, 4), dtype=tf.float32)
augmenter = augment.RandAugment.build_for_detection()
self.assertCountEqual(augmenter.available_ops, [
'AutoContrast', 'Equalize', 'Invert', 'Posterize', 'Solarize', 'Color',
'Contrast', 'Brightness', 'Sharpness', 'Cutout', 'SolarizeAdd',
'Rotate_BBox', 'ShearX_BBox', 'ShearY_BBox', 'TranslateX_BBox',
'TranslateY_BBox'
])
aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)
self.assertEqual((224, 224, 3), aug_image.shape)
self.assertEqual((2, 4), aug_bboxes.shape)
def test_all_policy_ops(self):
"""Smoke test to be sure all augmentation functions can execute."""
prob = 1
magnitude = 10
replace_value = [128] * 3
cutout_const = 100
translate_const = 250
image = tf.ones((224, 224, 3), dtype=tf.uint8)
bboxes = None
for op_name in augment.NAME_TO_FUNC.keys() - augment.REQUIRE_BOXES_FUNCS:
func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
replace_value, cutout_const,
translate_const)
image, bboxes = func(image, bboxes, *args)
self.assertEqual((224, 224, 3), image.shape)
self.assertIsNone(bboxes)
def test_all_policy_ops_with_bboxes(self):
"""Smoke test to be sure all augmentation functions can execute."""
prob = 1
magnitude = 10
replace_value = [128] * 3
cutout_const = 100
translate_const = 250
image = tf.ones((224, 224, 3), dtype=tf.uint8)
bboxes = tf.ones((2, 4), dtype=tf.float32)
for op_name in augment.NAME_TO_FUNC:
func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
replace_value, cutout_const,
translate_const)
image, bboxes = func(image, bboxes, *args)
self.assertEqual((224, 224, 3), image.shape)
self.assertEqual((2, 4), bboxes.shape)
def test_autoaugment_video(self):
"""Smoke test with video to be sure there are no syntax errors."""
image = tf.zeros((2, 224, 224, 3), dtype=tf.uint8)
for policy in self.AVAILABLE_POLICIES:
augmenter = augment.AutoAugment(augmentation_name=policy)
aug_image = augmenter.distort(image)
self.assertEqual((2, 224, 224, 3), aug_image.shape)
def test_autoaugment_video_with_boxes(self):
"""Smoke test with video to be sure there are no syntax errors."""
image = tf.zeros((2, 224, 224, 3), dtype=tf.uint8)
bboxes = tf.ones((2, 2, 4), dtype=tf.float32)
for policy in self.AVAILABLE_POLICIES:
augmenter = augment.AutoAugment(augmentation_name=policy)
aug_image, aug_bboxes = augmenter.distort_with_boxes(image, bboxes)
self.assertEqual((2, 224, 224, 3), aug_image.shape)
self.assertEqual((2, 2, 4), aug_bboxes.shape)
def test_randaug_video(self):
"""Smoke test with video to be sure there are no syntax errors."""
image = tf.zeros((2, 224, 224, 3), dtype=tf.uint8)
augmenter = augment.RandAugment()
aug_image = augmenter.distort(image)
self.assertEqual((2, 224, 224, 3), aug_image.shape)
def test_all_policy_ops_video(self):
"""Smoke test to be sure all video augmentation functions can execute."""
prob = 1
magnitude = 10
replace_value = [128] * 3
cutout_const = 100
translate_const = 250
image = tf.ones((2, 224, 224, 3), dtype=tf.uint8)
bboxes = None
for op_name in augment.NAME_TO_FUNC.keys() - augment.REQUIRE_BOXES_FUNCS:
func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
replace_value, cutout_const,
translate_const)
image, bboxes = func(image, bboxes, *args)
self.assertEqual((2, 224, 224, 3), image.shape)
self.assertIsNone(bboxes)
def test_all_policy_ops_video_with_bboxes(self):
"""Smoke test to be sure all video augmentation functions can execute."""
prob = 1
magnitude = 10
replace_value = [128] * 3
cutout_const = 100
translate_const = 250
image = tf.ones((2, 224, 224, 3), dtype=tf.uint8)
bboxes = tf.ones((2, 2, 4), dtype=tf.float32)
for op_name in augment.NAME_TO_FUNC:
func, _, args = augment._parse_policy_info(op_name, prob, magnitude,
replace_value, cutout_const,
translate_const)
if op_name in {
'Rotate_BBox',
'ShearX_BBox',
'ShearY_BBox',
'TranslateX_BBox',
'TranslateY_BBox',
'TranslateY_Only_BBoxes',
}:
with self.assertRaises(ValueError):
func(image, bboxes, *args)
else:
image, bboxes = func(image, bboxes, *args)
self.assertEqual((2, 224, 224, 3), image.shape)
self.assertEqual((2, 2, 4), bboxes.shape)
def _generate_test_policy(self):
"""Generate a test policy at random."""
op_list = list(augment.NAME_TO_FUNC.keys())
size = 6
prob = [round(random.uniform(0., 1.), 1) for _ in range(size)]
mag = [round(random.uniform(0, 10)) for _ in range(size)]
policy = []
for i in range(0, size, 2):
policy.append([(op_list[i], prob[i], mag[i]),
(op_list[i + 1], prob[i + 1], mag[i + 1])])
return policy
def test_custom_policy(self):
"""Test autoaugment with a custom policy."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
augmenter = augment.AutoAugment(policies=self._generate_test_policy())
aug_image = augmenter.distort(image)
self.assertEqual((224, 224, 3), aug_image.shape)
def test_autoaugment_three_augment(self):
"""Test three augmentation."""
image = tf.random.normal(shape=(224, 224, 3), dtype=tf.float32)
augmenter = augment.AutoAugment(augmentation_name='deit3_three_augment')
aug_image = augmenter.distort(image)
self.assertEqual((224, 224, 3), aug_image.shape)
self.assertFalse(tf.math.reduce_all(image == aug_image))
@parameterized.named_parameters(
{'testcase_name': '_OutOfRangeProb',
'sub_policy': ('Equalize', 1.1, 3), 'value': '1.1'},
{'testcase_name': '_OutOfRangeMag',
'sub_policy': ('Equalize', 0.9, 11), 'value': '11'},
)
def test_invalid_custom_sub_policy(self, sub_policy, value):
"""Test autoaugment with out-of-range values in the custom policy."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
policy = self._generate_test_policy()
policy[0][0] = sub_policy
augmenter = augment.AutoAugment(policies=policy)
with self.assertRaisesRegex(
tf.errors.InvalidArgumentError,
r'Expected \'tf.Tensor\(False, shape=\(\), dtype=bool\)\' to be true. '
r'Summarized data: ({})'.format(value)):
augmenter.distort(image)
def test_invalid_custom_policy_ndim(self):
"""Test autoaugment with wrong dimension in the custom policy."""
policy = [[('Equalize', 0.8, 1), ('Shear', 0.8, 4)],
[('TranslateY', 0.6, 3), ('Rotate', 0.9, 3)]]
policy = [[policy]]
with self.assertRaisesRegex(
ValueError,
r'Expected \(:, :, 3\) but got \(1, 1, 2, 2, 3\).'):
augment.AutoAugment(policies=policy)
def test_invalid_custom_policy_shape(self):
"""Test autoaugment with wrong shape in the custom policy."""
policy = [[('Equalize', 0.8, 1, 1), ('Shear', 0.8, 4, 1)],
[('TranslateY', 0.6, 3, 1), ('Rotate', 0.9, 3, 1)]]
with self.assertRaisesRegex(
ValueError,
r'Expected \(:, :, 3\) but got \(2, 2, 4\)'):
augment.AutoAugment(policies=policy)
def test_invalid_custom_policy_key(self):
"""Test autoaugment with invalid key in the custom policy."""
image = tf.zeros((224, 224, 3), dtype=tf.uint8)
policy = [[('AAAAA', 0.8, 1), ('Shear', 0.8, 4)],
[('TranslateY', 0.6, 3), ('Rotate', 0.9, 3)]]
augmenter = augment.AutoAugment(policies=policy)
with self.assertRaisesRegex(KeyError, '\'AAAAA\''):
augmenter.distort(image)
class RandomErasingTest(tf.test.TestCase, parameterized.TestCase):
def test_random_erase_replaces_some_pixels(self):
image = tf.zeros((224, 224, 3), dtype=tf.float32)
augmenter = augment.RandomErasing(probability=1., max_count=10)
aug_image = augmenter.distort(image)
self.assertEqual((224, 224, 3), aug_image.shape)
self.assertNotEqual(0, tf.reduce_max(aug_image))
class MixupAndCutmixTest(tf.test.TestCase, parameterized.TestCase):
def test_mixup_and_cutmix_smoothes_labels(self):
batch_size = 12
num_classes = 1000
label_smoothing = 0.1
images = tf.random.normal((batch_size, 224, 224, 3), dtype=tf.float32)
labels = tf.range(batch_size)
augmenter = augment.MixupAndCutmix(
num_classes=num_classes, label_smoothing=label_smoothing)
aug_images, aug_labels = augmenter.distort(images, labels)
self.assertEqual(images.shape, aug_images.shape)
self.assertEqual(images.dtype, aug_images.dtype)
self.assertEqual([batch_size, num_classes], aug_labels.shape)
self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
2. / num_classes) # With tolerance
self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
1e4) # With tolerance
def test_mixup_changes_image(self):
batch_size = 12
num_classes = 1000
label_smoothing = 0.1
images = tf.random.normal((batch_size, 224, 224, 3), dtype=tf.float32)
labels = tf.range(batch_size)
augmenter = augment.MixupAndCutmix(
mixup_alpha=1., cutmix_alpha=0., num_classes=num_classes)
aug_images, aug_labels = augmenter.distort(images, labels)
self.assertEqual(images.shape, aug_images.shape)
self.assertEqual(images.dtype, aug_images.dtype)
self.assertEqual([batch_size, num_classes], aug_labels.shape)
self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
2. / num_classes) # With tolerance
self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
1e4) # With tolerance
self.assertFalse(tf.math.reduce_all(images == aug_images))
def test_cutmix_changes_image(self):
batch_size = 12
num_classes = 1000
label_smoothing = 0.1
images = tf.random.normal((batch_size, 224, 224, 3), dtype=tf.float32)
labels = tf.range(batch_size)
augmenter = augment.MixupAndCutmix(
mixup_alpha=0., cutmix_alpha=1., num_classes=num_classes)
aug_images, aug_labels = augmenter.distort(images, labels)
self.assertEqual(images.shape, aug_images.shape)
self.assertEqual(images.dtype, aug_images.dtype)
self.assertEqual([batch_size, num_classes], aug_labels.shape)
self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
2. / num_classes) # With tolerance
self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
1e4) # With tolerance
self.assertFalse(tf.math.reduce_all(images == aug_images))
def test_mixup_and_cutmix_smoothes_labels_with_videos(self):
batch_size = 12
num_classes = 1000
label_smoothing = 0.1
images = tf.random.normal((batch_size, 8, 224, 224, 3), dtype=tf.float32)
labels = tf.range(batch_size)
augmenter = augment.MixupAndCutmix(
num_classes=num_classes, label_smoothing=label_smoothing)
aug_images, aug_labels = augmenter.distort(images, labels)
self.assertEqual(images.shape, aug_images.shape)
self.assertEqual(images.dtype, aug_images.dtype)
self.assertEqual([batch_size, num_classes], aug_labels.shape)
self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
2. / num_classes) # With tolerance
self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
1e4) # With tolerance
def test_mixup_changes_video(self):
batch_size = 12
num_classes = 1000
label_smoothing = 0.1
images = tf.random.normal((batch_size, 8, 224, 224, 3), dtype=tf.float32)
labels = tf.range(batch_size)
augmenter = augment.MixupAndCutmix(
mixup_alpha=1., cutmix_alpha=0., num_classes=num_classes)
aug_images, aug_labels = augmenter.distort(images, labels)
self.assertEqual(images.shape, aug_images.shape)
self.assertEqual(images.dtype, aug_images.dtype)
self.assertEqual([batch_size, num_classes], aug_labels.shape)
self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
2. / num_classes) # With tolerance
self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
1e4) # With tolerance
self.assertFalse(tf.math.reduce_all(images == aug_images))
def test_cutmix_changes_video(self):
batch_size = 12
num_classes = 1000
label_smoothing = 0.1
images = tf.random.normal((batch_size, 8, 224, 224, 3), dtype=tf.float32)
labels = tf.range(batch_size)
augmenter = augment.MixupAndCutmix(
mixup_alpha=0., cutmix_alpha=1., num_classes=num_classes)
aug_images, aug_labels = augmenter.distort(images, labels)
self.assertEqual(images.shape, aug_images.shape)
self.assertEqual(images.dtype, aug_images.dtype)
self.assertEqual([batch_size, num_classes], aug_labels.shape)
self.assertAllLessEqual(aug_labels, 1. - label_smoothing +
2. / num_classes) # With tolerance
self.assertAllGreaterEqual(aug_labels, label_smoothing / num_classes -
1e4) # With tolerance
self.assertFalse(tf.math.reduce_all(images == aug_images))
if __name__ == '__main__':
tf.test.main()
|