File size: 34,618 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Box related ops."""

# Import libraries
import numpy as np
import tensorflow as tf, tf_keras


EPSILON = 1e-8
BBOX_XFORM_CLIP = np.log(1000. / 16.)


def yxyx_to_xywh(boxes):
  """Converts boxes from ymin, xmin, ymax, xmax to xmin, ymin, width, height.

  Args:
    boxes: a numpy array whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.

  Returns:
    boxes: a numpy array whose shape is the same as `boxes` in new format.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  boxes_ymin = boxes[..., 0]
  boxes_xmin = boxes[..., 1]
  boxes_width = boxes[..., 3] - boxes[..., 1]
  boxes_height = boxes[..., 2] - boxes[..., 0]
  new_boxes = np.stack(
      [boxes_xmin, boxes_ymin, boxes_width, boxes_height], axis=-1)

  return new_boxes


def yxyx_to_cycxhw(boxes):
  """Converts box corner coordinates to center plus height and width terms.

  Args:
    boxes: a `Tensor` with last dimension of 4, representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.

  Returns:
    boxes: a `Tensor` with the same shape as the inputted boxes, in the format
      of cy, cx, height, width.

  Raises:
    ValueError: if the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('Last dimension of boxes must be 4 but is {:d}'.format(
        boxes.shape[-1]))

  boxes_ycenter = (boxes[..., 0] + boxes[..., 2]) / 2
  boxes_xcenter = (boxes[..., 1] + boxes[..., 3]) / 2
  boxes_height = boxes[..., 2] - boxes[..., 0]
  boxes_width = boxes[..., 3] - boxes[..., 1]

  new_boxes = tf.stack(
      [boxes_ycenter, boxes_xcenter, boxes_height, boxes_width], axis=-1)
  return new_boxes


def cycxhw_to_yxyx(boxes):
  """Converts box center coordinates plus height and width terms to corner.

  Args:
    boxes: a numpy array whose last dimension is 4 representing the coordinates
      of boxes in cy, cx, height, width order.

  Returns:
    boxes: a numpy array whose shape is the same as `boxes` in new format.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  boxes_ymin = boxes[..., 0] - boxes[..., 2] / 2
  boxes_xmin = boxes[..., 1] - boxes[..., 3] / 2
  boxes_ymax = boxes[..., 0] + boxes[..., 2] / 2
  boxes_xmax = boxes[..., 1] + boxes[..., 3] / 2
  new_boxes = tf.stack([
      boxes_ymin, boxes_xmin, boxes_ymax, boxes_xmax], axis=-1)
  return new_boxes


def jitter_boxes(boxes, noise_scale=0.025):
  """Jitters the box coordinates by some noise distribution.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    noise_scale: a python float which specifies the magnitude of noise. The rule
      of thumb is to set this between (0, 0.1]. The default value is found to
      mimic the noisy detections best empirically.

  Returns:
    jittered_boxes: a tensor whose shape is the same as `boxes` representing
      the jittered boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  with tf.name_scope('jitter_boxes'):
    bbox_jitters = tf.random.normal(tf.shape(boxes), stddev=noise_scale)
    ymin = boxes[..., 0:1]
    xmin = boxes[..., 1:2]
    ymax = boxes[..., 2:3]
    xmax = boxes[..., 3:4]
    width = xmax - xmin
    height = ymax - ymin
    new_center_x = (xmin + xmax) / 2.0 + bbox_jitters[..., 0:1] * width
    new_center_y = (ymin + ymax) / 2.0 + bbox_jitters[..., 1:2] * height
    new_width = width * tf.math.exp(bbox_jitters[..., 2:3])
    new_height = height * tf.math.exp(bbox_jitters[..., 3:4])
    jittered_boxes = tf.concat(
        [new_center_y - new_height * 0.5, new_center_x - new_width * 0.5,
         new_center_y + new_height * 0.5, new_center_x + new_width * 0.5],
        axis=-1)

    return jittered_boxes


def normalize_boxes(boxes, image_shape):
  """Converts boxes to the normalized coordinates.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].

  Returns:
    normalized_boxes: a tensor whose shape is the same as `boxes` representing
      the normalized boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  with tf.name_scope('normalize_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height = image_shape[..., 0:1]
      width = image_shape[..., 1:2]

    ymin = boxes[..., 0:1] / height
    xmin = boxes[..., 1:2] / width
    ymax = boxes[..., 2:3] / height
    xmax = boxes[..., 3:4] / width

    normalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1)
    return normalized_boxes


def denormalize_boxes(boxes, image_shape):
  """Converts boxes normalized by [height, width] to pixel coordinates.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].

  Returns:
    denormalized_boxes: a tensor whose shape is the same as `boxes` representing
      the denormalized boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  with tf.name_scope('denormalize_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height, width = tf.split(image_shape, 2, axis=-1)

    ymin, xmin, ymax, xmax = tf.split(boxes, 4, axis=-1)
    ymin = ymin * height
    xmin = xmin * width
    ymax = ymax * height
    xmax = xmax * width

    denormalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1)
    return denormalized_boxes


def horizontal_flip_boxes(normalized_boxes):
  """Flips normalized boxes horizontally.

  Args:
    normalized_boxes: the boxes in normalzied coordinates.

  Returns:
    horizontally flipped boxes.
  """
  if normalized_boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        normalized_boxes.shape[-1]))

  with tf.name_scope('horizontal_flip_boxes'):
    ymin, xmin, ymax, xmax = tf.split(
        value=normalized_boxes, num_or_size_splits=4, axis=-1)
    flipped_xmin = tf.subtract(1.0, xmax)
    flipped_xmax = tf.subtract(1.0, xmin)
    flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], axis=-1)
    return flipped_boxes


def vertical_flip_boxes(normalized_boxes):
  """Flips normalized boxes vertically.

  Args:
    normalized_boxes: the boxes in normalzied coordinates.

  Returns:
    vertically flipped boxes.
  """
  if normalized_boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        normalized_boxes.shape[-1]))

  with tf.name_scope('vertical_flip_boxes'):
    ymin, xmin, ymax, xmax = tf.split(
        value=normalized_boxes, num_or_size_splits=4, axis=-1)
    flipped_ymin = tf.subtract(1.0, ymax)
    flipped_ymax = tf.subtract(1.0, ymin)
    flipped_boxes = tf.concat([flipped_ymin, xmin, flipped_ymax, xmax], axis=-1)
    return flipped_boxes


def clip_boxes(boxes, image_shape):
  """Clips boxes to image boundaries.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].

  Returns:
    clipped_boxes: a tensor whose shape is the same as `boxes` representing the
      clipped boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  with tf.name_scope('clip_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
      max_length = [height, width, height, width]
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height, width = tf.unstack(image_shape, axis=-1)
      max_length = tf.stack([height, width, height, width], axis=-1)

    clipped_boxes = tf.math.maximum(tf.math.minimum(boxes, max_length), 0.0)
    return clipped_boxes


def compute_outer_boxes(boxes, image_shape, scale=1.0):
  """Computes outer box encloses an object with a margin.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].
    scale: a float number specifying the scale of output outer boxes to input
      `boxes`.

  Returns:
    outer_boxes: a tensor whose shape is the same as `boxes` representing the
      outer boxes.
  """
  if scale < 1.0:
    raise ValueError(
        'scale is {}, but outer box scale must be greater than 1.0.'.format(
            scale))
  if scale == 1.0:
    return boxes
  centers_y = (boxes[..., 0] + boxes[..., 2]) / 2.0
  centers_x = (boxes[..., 1] + boxes[..., 3]) / 2.0
  box_height = (boxes[..., 2] - boxes[..., 0]) * scale
  box_width = (boxes[..., 3] - boxes[..., 1]) * scale
  outer_boxes = tf.stack(
      [centers_y - box_height / 2.0, centers_x - box_width / 2.0,
       centers_y + box_height / 2.0, centers_x + box_width / 2.0],
      axis=-1)
  outer_boxes = clip_boxes(outer_boxes, image_shape)
  return outer_boxes


def encode_boxes(boxes, anchors, weights=None):
  """Encodes boxes to targets.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.
    anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
      representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
    weights: None or a list of four float numbers used to scale coordinates.

  Returns:
    encoded_boxes: a tensor whose shape is the same as `boxes` representing the
      encoded box targets.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  with tf.name_scope('encode_boxes'):
    boxes = tf.cast(boxes, dtype=anchors.dtype)
    ymin = boxes[..., 0:1]
    xmin = boxes[..., 1:2]
    ymax = boxes[..., 2:3]
    xmax = boxes[..., 3:4]
    box_h = ymax - ymin
    box_w = xmax - xmin
    box_yc = ymin + 0.5 * box_h
    box_xc = xmin + 0.5 * box_w

    anchor_ymin = anchors[..., 0:1]
    anchor_xmin = anchors[..., 1:2]
    anchor_ymax = anchors[..., 2:3]
    anchor_xmax = anchors[..., 3:4]
    anchor_h = anchor_ymax - anchor_ymin
    anchor_w = anchor_xmax - anchor_xmin
    anchor_yc = anchor_ymin + 0.5 * anchor_h
    anchor_xc = anchor_xmin + 0.5 * anchor_w

    # Avoid inf in log below.
    anchor_h += EPSILON
    anchor_w += EPSILON
    box_h += EPSILON
    box_w += EPSILON

    encoded_dy = (box_yc - anchor_yc) / anchor_h
    encoded_dx = (box_xc - anchor_xc) / anchor_w
    encoded_dh = tf.math.log(box_h / anchor_h)
    encoded_dw = tf.math.log(box_w / anchor_w)
    if weights:
      encoded_dy *= weights[0]
      encoded_dx *= weights[1]
      encoded_dh *= weights[2]
      encoded_dw *= weights[3]

    encoded_boxes = tf.concat(
        [encoded_dy, encoded_dx, encoded_dh, encoded_dw], axis=-1)
    return encoded_boxes


def decode_boxes(encoded_boxes, anchors, weights=None):
  """Decodes boxes.

  Args:
    encoded_boxes: a tensor whose last dimension is 4 representing the
      coordinates of encoded boxes in dy, dx, dh, dw in order.
    anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
      representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
    weights: None or a list of four float numbers used to scale coordinates.

  Returns:
    decoded_boxes: a tensor whose shape is the same as `boxes` representing the
      decoded box targets.
  """
  if encoded_boxes.shape[-1] != 4:
    raise ValueError(
        'encoded_boxes.shape[-1] is {:d}, but must be 4.'
        .format(encoded_boxes.shape[-1]))

  with tf.name_scope('decode_boxes'):
    encoded_boxes = tf.cast(encoded_boxes, dtype=anchors.dtype)
    dy, dx, dh, dw = tf.split(encoded_boxes, 4, -1)
    if weights:
      dy /= weights[0]
      dx /= weights[1]
      dh /= weights[2]
      dw /= weights[3]
    dh = tf.math.minimum(dh, BBOX_XFORM_CLIP)
    dw = tf.math.minimum(dw, BBOX_XFORM_CLIP)

    anchor_ymin, anchor_xmin, anchor_ymax, anchor_xmax = tf.split(
        anchors, 4, -1)
    anchor_h = anchor_ymax - anchor_ymin
    anchor_w = anchor_xmax - anchor_xmin
    anchor_yc = anchor_ymin + 0.5 * anchor_h
    anchor_xc = anchor_xmin + 0.5 * anchor_w

    decoded_boxes_yc = dy * anchor_h + anchor_yc
    decoded_boxes_xc = dx * anchor_w + anchor_xc
    decoded_boxes_h = tf.math.exp(dh) * anchor_h
    decoded_boxes_w = tf.math.exp(dw) * anchor_w

    decoded_boxes_ymin = decoded_boxes_yc - 0.5 * decoded_boxes_h
    decoded_boxes_xmin = decoded_boxes_xc - 0.5 * decoded_boxes_w
    decoded_boxes_ymax = decoded_boxes_ymin + decoded_boxes_h
    decoded_boxes_xmax = decoded_boxes_xmin + decoded_boxes_w

    decoded_boxes = tf.concat(
        [decoded_boxes_ymin, decoded_boxes_xmin,
         decoded_boxes_ymax, decoded_boxes_xmax],
        axis=-1)
    return decoded_boxes


def filter_boxes(boxes, scores, image_shape, min_size_threshold):
  """Filters and remove boxes that are too small or fall outside the image.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    scores: a tensor whose shape is the same as tf.shape(boxes)[:-1]
      representing the original scores of the boxes.
    image_shape: a tensor whose shape is the same as, or `broadcastable` to
      `boxes` except the last dimension, which is 2, representing [height,
      width] of the scaled image.
    min_size_threshold: a float representing the minimal box size in each side
      (w.r.t. the scaled image). Boxes whose sides are smaller than it will be
      filtered out.

  Returns:
    filtered_boxes: a tensor whose shape is the same as `boxes` but with
      the position of the filtered boxes are filled with 0.
    filtered_scores: a tensor whose shape is the same as 'scores' but with
      the positinon of the filtered boxes filled with 0.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  with tf.name_scope('filter_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height = image_shape[..., 0]
      width = image_shape[..., 1]

    ymin = boxes[..., 0]
    xmin = boxes[..., 1]
    ymax = boxes[..., 2]
    xmax = boxes[..., 3]

    h = ymax - ymin
    w = xmax - xmin
    yc = ymin + 0.5 * h
    xc = xmin + 0.5 * w

    min_size = tf.cast(
        tf.math.maximum(min_size_threshold, 0.0), dtype=boxes.dtype)

    filtered_size_mask = tf.math.logical_and(
        tf.math.greater(h, min_size), tf.math.greater(w, min_size))
    filtered_center_mask = tf.logical_and(
        tf.math.logical_and(tf.math.greater(yc, 0.0), tf.math.less(yc, height)),
        tf.math.logical_and(tf.math.greater(xc, 0.0), tf.math.less(xc, width)))
    filtered_mask = tf.math.logical_and(
        filtered_size_mask, filtered_center_mask)

    filtered_scores = tf.where(filtered_mask, scores, tf.zeros_like(scores))
    filtered_boxes = tf.cast(
        tf.expand_dims(filtered_mask, axis=-1), dtype=boxes.dtype) * boxes
    return filtered_boxes, filtered_scores


def filter_boxes_by_scores(boxes, scores, min_score_threshold):
  """Filters and remove boxes whose scores are smaller than the threshold.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    scores: a tensor whose shape is the same as tf.shape(boxes)[:-1]
      representing the original scores of the boxes.
    min_score_threshold: a float representing the minimal box score threshold.
      Boxes whose score are smaller than it will be filtered out.

  Returns:
    filtered_boxes: a tensor whose shape is the same as `boxes` but with
      the position of the filtered boxes are filled with -1.
    filtered_scores: a tensor whose shape is the same as 'scores' but with
      the
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('filter_boxes_by_scores'):
    filtered_mask = tf.math.greater(scores, min_score_threshold)
    filtered_scores = tf.where(filtered_mask, scores, -tf.ones_like(scores))
    filtered_boxes = tf.cast(
        tf.expand_dims(filtered_mask, axis=-1), dtype=boxes.dtype) * boxes

    return filtered_boxes, filtered_scores


def gather_instances(selected_indices, instances, *aux_instances):
  """Gathers instances by indices.

  Args:
    selected_indices: a Tensor of shape [batch, K] which indicates the selected
      indices in instance dimension (2nd dimension).
    instances: a Tensor of shape [batch, N, ...] where the 2nd dimension is
      the instance dimension to be selected from.
    *aux_instances: the additional Tensors whose shapes are in [batch, N, ...]
      which are the tensors to be selected from using the `selected_indices`.

  Returns:
    selected_instances: the tensor of shape [batch, K, ...] which corresponds to
      the selected instances of the `instances` tensor.
    selected_aux_instances: the additional tensors of shape [batch, K, ...]
      which corresponds to the selected instances of the `aus_instances`
      tensors.
  """
  batch_size = instances.shape[0]
  if batch_size == 1:
    selected_instances = tf.squeeze(
        tf.gather(instances, selected_indices, axis=1), axis=1)
    if aux_instances:
      selected_aux_instances = [
          tf.squeeze(
              tf.gather(a, selected_indices, axis=1), axis=1)
          for a in aux_instances
      ]
      return tuple([selected_instances] + selected_aux_instances)
    else:
      return selected_instances
  else:
    indices_shape = tf.shape(selected_indices)
    batch_indices = (
        tf.expand_dims(tf.range(indices_shape[0]), axis=-1) *
        tf.ones([1, indices_shape[-1]], dtype=tf.int32))
    gather_nd_indices = tf.stack(
        [batch_indices, selected_indices], axis=-1)
    selected_instances = tf.gather_nd(instances, gather_nd_indices)
    if aux_instances:
      selected_aux_instances = [
          tf.gather_nd(a, gather_nd_indices) for a in aux_instances
      ]
      return tuple([selected_instances] + selected_aux_instances)
    else:
      return selected_instances


def top_k_boxes(boxes, scores, k):
  """Sorts and select top k boxes according to the scores.

  Args:
    boxes: a tensor of shape [batch_size, N, 4] representing the coordinate of
      the boxes. N is the number of boxes per image.
    scores: a tensor of shsape [batch_size, N] representing the socre of the
      boxes.
    k: an integer or a tensor indicating the top k number.

  Returns:
    selected_boxes: a tensor of shape [batch_size, k, 4] representing the
      selected top k box coordinates.
    selected_scores: a tensor of shape [batch_size, k] representing the selected
      top k box scores.
  """
  with tf.name_scope('top_k_boxes'):
    selected_scores, top_k_indices = tf.nn.top_k(scores, k=k, sorted=True)
    selected_boxes = gather_instances(top_k_indices, boxes)
    return selected_boxes, selected_scores


def get_non_empty_box_indices(boxes):
  """Gets indices for non-empty boxes."""
  # Selects indices if box height or width is 0.
  height = boxes[:, 2] - boxes[:, 0]
  width = boxes[:, 3] - boxes[:, 1]
  indices = tf.where(tf.logical_and(tf.greater(height, 0),
                                    tf.greater(width, 0)))
  return indices[:, 0]


def bbox_overlap(boxes, gt_boxes):
  """Calculates the overlap between proposal and ground truth boxes.

  Some `boxes` or `gt_boxes` may have been padded.  The returned `iou` tensor
  for these boxes will be -1.

  Args:
    boxes: a tensor with a shape of [batch_size, N, 4]. N is the number of
      proposals before groundtruth assignment (e.g., rpn_post_nms_topn). The
      last dimension is the pixel coordinates in [ymin, xmin, ymax, xmax] form.
    gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4]. This
      tensor might have paddings with a negative value.

  Returns:
    iou: a tensor with as a shape of [batch_size, N, MAX_NUM_INSTANCES].
  """
  with tf.name_scope('bbox_overlap'):
    bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
        value=boxes, num_or_size_splits=4, axis=2)
    gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
        value=gt_boxes, num_or_size_splits=4, axis=2)

    # Calculates the intersection area.
    i_xmin = tf.math.maximum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
    i_xmax = tf.math.minimum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
    i_ymin = tf.math.maximum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
    i_ymax = tf.math.minimum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
    i_area = (
        tf.math.maximum((i_xmax - i_xmin), 0) *
        tf.math.maximum((i_ymax - i_ymin), 0))

    # Calculates the union area.
    bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
    gt_area = (gt_y_max - gt_y_min) * (gt_x_max - gt_x_min)
    # Adds a small epsilon to avoid divide-by-zero.
    u_area = bb_area + tf.transpose(gt_area, [0, 2, 1]) - i_area + 1e-8

    # Calculates IoU.
    iou = i_area / u_area

    # Fills -1 for IoU entries between the padded ground truth boxes.
    gt_invalid_mask = tf.less(
        tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0)
    padding_mask = tf.logical_or(
        tf.zeros_like(bb_x_min, dtype=tf.bool),
        tf.transpose(gt_invalid_mask, [0, 2, 1]))
    iou = tf.where(padding_mask, -tf.ones_like(iou), iou)

    # Fills -1 for invalid (-1) boxes.
    boxes_invalid_mask = tf.less(
        tf.reduce_max(boxes, axis=-1, keepdims=True), 0.0)
    iou = tf.where(boxes_invalid_mask, -tf.ones_like(iou), iou)

    return iou


def bbox_generalized_overlap(boxes, gt_boxes):
  """Calculates the GIOU between proposal and ground truth boxes.

  The generalized intersection of union is an adjustment of the traditional IOU
  metric which provides continuous updates even for predictions with no overlap.
  This metric is defined in https://giou.stanford.edu/GIoU.pdf. Note, some
  `gt_boxes` may have been padded. The returned `giou` tensor for these boxes
  will be -1.

  Args:
    boxes: a `Tensor` with a shape of [batch_size, N, 4]. N is the number of
      proposals before groundtruth assignment (e.g., rpn_post_nms_topn). The
      last dimension is the pixel coordinates in [ymin, xmin, ymax, xmax] form.
    gt_boxes: a `Tensor` with a shape of [batch_size, max_num_instances, 4].
      This tensor may have paddings with a negative value and will also be in
      the [ymin, xmin, ymax, xmax] format.

  Returns:
    giou: a `Tensor` with as a shape of [batch_size, N, max_num_instances].
  """
  with tf.name_scope('bbox_generalized_overlap'):
    assert boxes.shape.as_list(
    )[-1] == 4, 'Boxes must be defined by 4 coordinates.'
    assert gt_boxes.shape.as_list(
    )[-1] == 4, 'Groundtruth boxes must be defined by 4 coordinates.'

    bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
        value=boxes, num_or_size_splits=4, axis=2)
    gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
        value=gt_boxes, num_or_size_splits=4, axis=2)

    # Calculates the hull area for each pair of boxes, with one from
    # boxes and the other from gt_boxes.
    # Outputs for coordinates are of shape [batch_size, N, max_num_instances]
    h_xmin = tf.minimum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
    h_xmax = tf.maximum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
    h_ymin = tf.minimum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
    h_ymax = tf.maximum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
    h_area = tf.maximum((h_xmax - h_xmin), 0) * tf.maximum((h_ymax - h_ymin), 0)
    # Add a small epsilon to avoid divide-by-zero.
    h_area = h_area + 1e-8

    # Calculates the intersection area.
    i_xmin = tf.maximum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
    i_xmax = tf.minimum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
    i_ymin = tf.maximum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
    i_ymax = tf.minimum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
    i_area = tf.maximum((i_xmax - i_xmin), 0) * tf.maximum((i_ymax - i_ymin), 0)

    # Calculates the union area.
    bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
    gt_area = (gt_y_max - gt_y_min) * (gt_x_max - gt_x_min)

    # Adds a small epsilon to avoid divide-by-zero.
    u_area = bb_area + tf.transpose(gt_area, [0, 2, 1]) - i_area + 1e-8

    # Calculates IoU.
    iou = i_area / u_area
    # Calculates GIoU.
    giou = iou - (h_area - u_area) / h_area

    # Fills -1 for GIoU entries between the padded ground truth boxes.
    gt_invalid_mask = tf.less(
        tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0)
    padding_mask = tf.broadcast_to(
        tf.transpose(gt_invalid_mask, [0, 2, 1]), tf.shape(giou))
    giou = tf.where(padding_mask, -tf.ones_like(giou), giou)
    return giou


def bbox_intersection_over_area(boxes, gt_boxes):
  """Calculates IoAs (intersection over area) between proposal and ground truth boxes.

  Some `boxes` or `gt_boxes` may have been padded.  The returned `iou` tensor
  for these boxes will be -1.

  Args:
    boxes: a tensor with a shape of [batch_size, N, 4]. N is the number of
      proposals before groundtruth assignment (e.g., rpn_post_nms_topn). The
      last dimension is the pixel coordinates in [ymin, xmin, ymax, xmax] form.
    gt_boxes: a tensor with a shape of [batch_size, M, 4]. This tensor might
      have paddings with a negative value.

  Returns:
    ioa: a tensor with as a shape of [batch_size, N, M].
  """
  with tf.name_scope('bbox_overlap'):
    bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
        value=boxes, num_or_size_splits=4, axis=2
    )
    gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
        value=gt_boxes, num_or_size_splits=4, axis=2
    )

    # Calculates the intersection area.
    i_xmin = tf.math.maximum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
    i_xmax = tf.math.minimum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
    i_ymin = tf.math.maximum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
    i_ymax = tf.math.minimum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
    i_area = tf.math.maximum((i_xmax - i_xmin), 0) * tf.math.maximum(
        (i_ymax - i_ymin), 0
    )

    bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
    ioa = tf.math.divide_no_nan(i_area, bb_area)

    # Fills -1 for IoA entries between the padded ground truth boxes.
    gt_invalid_mask = tf.less(
        tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0
    )
    padding_mask = tf.logical_or(
        tf.zeros_like(bb_x_min, dtype=tf.bool),
        tf.transpose(gt_invalid_mask, [0, 2, 1]),
    )
    ioa = tf.where(padding_mask, -1., ioa)

    # Fills -1 for invalid (-1) boxes.
    boxes_invalid_mask = tf.less(
        tf.reduce_max(boxes, axis=-1, keepdims=True), 0.0
    )
    ioa = tf.where(boxes_invalid_mask, -1., ioa)

    return ioa


def box_matching(boxes, gt_boxes, gt_classes):
  """Matches boxes to groundtruth boxes.

  Given the proposal boxes and the groundtruth boxes and classes, perform the
  groundtruth matching by taking the argmax of the IoU between boxes and
  groundtruth boxes.

  Args:
    boxes: a tensor of shape of [batch_size, N, 4] representing the box
      coordiantes to be matched to groundtruth boxes.
    gt_boxes: a tensor of shape of [batch_size, MAX_INSTANCES, 4] representing
      the groundtruth box coordinates. It is padded with -1s to indicate the
      invalid boxes.
    gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box
      classes. It is padded with -1s to indicate the invalid classes.

  Returns:
    matched_gt_boxes: a tensor of shape of [batch_size, N, 4], representing
      the matched groundtruth box coordinates for each input box. If the box
      does not overlap with any groundtruth boxes, the matched boxes of it
      will be set to all 0s.
    matched_gt_classes: a tensor of shape of [batch_size, N], representing
      the matched groundtruth classes for each input box. If the box does not
      overlap with any groundtruth boxes, the matched box classes of it will
      be set to 0, which corresponds to the background class.
    matched_gt_indices: a tensor of shape of [batch_size, N], representing
      the indices of the matched groundtruth boxes in the original gt_boxes
      tensor. If the box does not overlap with any groundtruth boxes, the
      index of the matched groundtruth will be set to -1.
    matched_iou: a tensor of shape of [batch_size, N], representing the IoU
      between the box and its matched groundtruth box. The matched IoU is the
      maximum IoU of the box and all the groundtruth boxes.
    iou: a tensor of shape of [batch_size, N, K], representing the IoU matrix
      between boxes and the groundtruth boxes. The IoU between a box and the
      invalid groundtruth boxes whose coordinates are [-1, -1, -1, -1] is -1.
  """
  # Compute IoU between boxes and gt_boxes.
  # iou <- [batch_size, N, K]
  iou = bbox_overlap(boxes, gt_boxes)

  # max_iou <- [batch_size, N]
  # 0.0 -> no match to gt, or -1.0 match to no gt
  matched_iou = tf.reduce_max(iou, axis=-1)

  # background_box_mask <- bool, [batch_size, N]
  background_box_mask = tf.less_equal(matched_iou, 0.0)

  argmax_iou_indices = tf.argmax(iou, axis=-1, output_type=tf.int32)

  matched_gt_boxes, matched_gt_classes = gather_instances(
      argmax_iou_indices, gt_boxes, gt_classes)
  matched_gt_boxes = tf.where(
      tf.tile(tf.expand_dims(background_box_mask, axis=-1), [1, 1, 4]),
      tf.zeros_like(matched_gt_boxes, dtype=matched_gt_boxes.dtype),
      matched_gt_boxes)
  matched_gt_classes = tf.where(
      background_box_mask,
      tf.zeros_like(matched_gt_classes),
      matched_gt_classes)

  matched_gt_indices = tf.where(
      background_box_mask,
      -tf.ones_like(argmax_iou_indices),
      argmax_iou_indices)

  return (matched_gt_boxes, matched_gt_classes, matched_gt_indices,
          matched_iou, iou)


def bbox2mask(bbox: tf.Tensor,
              *,
              image_height: int,
              image_width: int,
              dtype: tf.DType = tf.bool) -> tf.Tensor:
  """Converts bounding boxes to bitmasks.

  Args:
    bbox: A tensor in shape (..., 4) with arbitrary numbers of batch dimensions,
      representing the absolute coordinates (ymin, xmin, ymax, xmax) for each
      bounding box.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.
    dtype: DType of the output bitmasks.

  Returns:
    A tensor in shape (..., height, width) which stores the bitmasks created
    from the bounding boxes. For example:

    >>> bbox2mask(tf.constant([[1,2,4,4]]),
                  image_height=5,
                  image_width=5,
                  dtype=tf.int32)
    <tf.Tensor: shape=(1, 5, 5), dtype=int32, numpy=
    array([[[0, 0, 0, 0, 0],
            [0, 0, 1, 1, 0],
            [0, 0, 1, 1, 0],
            [0, 0, 1, 1, 0],
            [0, 0, 0, 0, 0]]], dtype=int32)>
  """
  bbox_shape = bbox.get_shape().as_list()
  if bbox_shape[-1] != 4:
    raise ValueError(
        'Expected the last dimension of `bbox` has size == 4, but the shape '
        'of `bbox` was: %s' % bbox_shape)

  # (..., 1)
  ymin = bbox[..., 0:1]
  xmin = bbox[..., 1:2]
  ymax = bbox[..., 2:3]
  xmax = bbox[..., 3:4]
  # (..., 1, width)
  ymin = tf.expand_dims(tf.repeat(ymin, repeats=image_width, axis=-1), axis=-2)
  # (..., height, 1)
  xmin = tf.expand_dims(tf.repeat(xmin, repeats=image_height, axis=-1), axis=-1)
  # (..., 1, width)
  ymax = tf.expand_dims(tf.repeat(ymax, repeats=image_width, axis=-1), axis=-2)
  # (..., height, 1)
  xmax = tf.expand_dims(tf.repeat(xmax, repeats=image_height, axis=-1), axis=-1)

  # (height, 1)
  y_grid = tf.expand_dims(tf.range(image_height, dtype=bbox.dtype), axis=-1)
  # (1, width)
  x_grid = tf.expand_dims(tf.range(image_width, dtype=bbox.dtype), axis=-2)

  # (..., height, width)
  ymin_mask = y_grid >= ymin
  xmin_mask = x_grid >= xmin
  ymax_mask = y_grid < ymax
  xmax_mask = x_grid < xmax
  return tf.cast(ymin_mask & xmin_mask & ymax_mask & xmax_mask, dtype)