File size: 10,270 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utility functions for segmentations."""

import math
from typing import List, Tuple

# Import libraries

import cv2
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import spatial_transform_ops


def paste_instance_masks(masks: np.ndarray, detected_boxes: np.ndarray,
                         image_height: int, image_width: int) -> np.ndarray:
  """Paste instance masks to generate the image segmentation results.

  Args:
    masks: a numpy array of shape [N, mask_height, mask_width] representing the
      instance masks w.r.t. the `detected_boxes`.
    detected_boxes: a numpy array of shape [N, 4] representing the reference
      bounding boxes.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.

  Returns:
    segms: a numpy array of shape [N, image_height, image_width] representing
      the instance masks *pasted* on the image canvas.
  """

  def expand_boxes(boxes: np.ndarray, scale: float) -> np.ndarray:
    """Expands an array of boxes by a given scale."""
    # Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/boxes.py#L227  # pylint: disable=line-too-long
    # The `boxes` in the reference implementation is in [x1, y1, x2, y2] form,
    # whereas `boxes` here is in [x1, y1, w, h] form
    w_half = boxes[:, 2] * 0.5
    h_half = boxes[:, 3] * 0.5
    x_c = boxes[:, 0] + w_half
    y_c = boxes[:, 1] + h_half

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp

  # Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/test.py#L812  # pylint: disable=line-too-long
  # To work around an issue with cv2.resize (it seems to automatically pad
  # with repeated border values), we manually zero-pad the masks by 1 pixel
  # prior to resizing back to the original image resolution. This prevents
  # "top hat" artifacts. We therefore need to expand the reference boxes by an
  # appropriate factor.
  _, mask_height, mask_width = masks.shape
  scale = max((mask_width + 2.0) / mask_width,
              (mask_height + 2.0) / mask_height)

  ref_boxes = expand_boxes(detected_boxes, scale)
  ref_boxes = ref_boxes.astype(np.int32)
  padded_mask = np.zeros((mask_height + 2, mask_width + 2), dtype=np.float32)
  segms = []
  for mask_ind, mask in enumerate(masks):
    im_mask = np.zeros((image_height, image_width), dtype=np.uint8)
    # Process mask inside bounding boxes.
    padded_mask[1:-1, 1:-1] = mask[:, :]

    ref_box = ref_boxes[mask_ind, :]
    w = ref_box[2] - ref_box[0] + 1
    h = ref_box[3] - ref_box[1] + 1
    w = np.maximum(w, 1)
    h = np.maximum(h, 1)

    mask = cv2.resize(padded_mask, (w, h))
    mask = np.array(mask > 0.5, dtype=np.uint8)

    x_0 = min(max(ref_box[0], 0), image_width)
    x_1 = min(max(ref_box[2] + 1, 0), image_width)
    y_0 = min(max(ref_box[1], 0), image_height)
    y_1 = min(max(ref_box[3] + 1, 0), image_height)

    im_mask[y_0:y_1, x_0:x_1] = mask[
        (y_0 - ref_box[1]):(y_1 - ref_box[1]),
        (x_0 - ref_box[0]):(x_1 - ref_box[0])
    ]
    segms.append(im_mask)

  segms = np.array(segms)
  assert masks.shape[0] == segms.shape[0]
  return segms


def paste_instance_masks_v2(masks: np.ndarray, detected_boxes: np.ndarray,
                            image_height: int, image_width: int) -> np.ndarray:
  """Paste instance masks to generate the image segmentation (v2).

  Args:
    masks: a numpy array of shape [N, mask_height, mask_width] representing the
      instance masks w.r.t. the `detected_boxes`.
    detected_boxes: a numpy array of shape [N, 4] representing the reference
      bounding boxes.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.

  Returns:
    segms: a numpy array of shape [N, image_height, image_width] representing
      the instance masks *pasted* on the image canvas.
  """
  _, mask_height, mask_width = masks.shape

  segms = []
  for i, mask in enumerate(masks):
    box = detected_boxes[i, :]
    xmin = box[0]
    ymin = box[1]
    xmax = xmin + box[2]
    ymax = ymin + box[3]

    # Sample points of the cropped mask w.r.t. the image grid.
    # Note that these coordinates may fall beyond the image.
    # Pixel clipping will happen after warping.
    xmin_int = int(math.floor(xmin))
    xmax_int = int(math.ceil(xmax))
    ymin_int = int(math.floor(ymin))
    ymax_int = int(math.ceil(ymax))

    alpha = box[2] / (1.0 * mask_width)
    beta = box[3] / (1.0 * mask_height)
    # pylint: disable=invalid-name
    # Transformation from mask pixel indices to image coordinate.
    M_mask_to_image = np.array(
        [[alpha, 0, xmin],
         [0, beta, ymin],
         [0, 0, 1]],
        dtype=np.float32)
    # Transformation from image to cropped mask coordinate.
    M_image_to_crop = np.array(
        [[1, 0, -xmin_int],
         [0, 1, -ymin_int],
         [0, 0, 1]],
        dtype=np.float32)
    M = np.dot(M_image_to_crop, M_mask_to_image)
    # Compensate the half pixel offset that OpenCV has in the
    # warpPerspective implementation: the top-left pixel is sampled
    # at (0,0), but we want it to be at (0.5, 0.5).
    M = np.dot(
        np.dot(
            np.array([[1, 0, -0.5],
                      [0, 1, -0.5],
                      [0, 0, 1]], np.float32),
            M),
        np.array([[1, 0, 0.5],
                  [0, 1, 0.5],
                  [0, 0, 1]], np.float32))
    # pylint: enable=invalid-name
    cropped_mask = cv2.warpPerspective(
        mask.astype(np.float32), M,
        (xmax_int - xmin_int, ymax_int - ymin_int))
    cropped_mask = np.array(cropped_mask > 0.5, dtype=np.uint8)

    img_mask = np.zeros((image_height, image_width))
    x0 = max(min(xmin_int, image_width), 0)
    x1 = max(min(xmax_int, image_width), 0)
    y0 = max(min(ymin_int, image_height), 0)
    y1 = max(min(ymax_int, image_height), 0)
    img_mask[y0:y1, x0:x1] = cropped_mask[
        (y0 - ymin_int):(y1 - ymin_int),
        (x0 - xmin_int):(x1 - xmin_int)]

    segms.append(img_mask)

  segms = np.array(segms)
  return segms


def instance_masks_overlap(
    boxes: tf.Tensor,
    masks: tf.Tensor,
    gt_boxes: tf.Tensor,
    gt_masks: tf.Tensor,
    output_size: List[int],
    mask_binarize_threshold: float = 0.5,
) -> Tuple[tf.Tensor, tf.Tensor]:
  """Calculates the IoUs and IoAs between the detection masks and the ground truth masks.

  IoU: intersection over union.
  IoA: intersection over the area of the detection masks.

  Args:
    boxes: a tensor with a shape of [batch_size, N, 4]. The last dimension is
      the pixel coordinates in [ymin, xmin, ymax, xmax] form.
    masks: a float tensor with a shape of [batch_size, N, mask_height,
      mask_width] representing the instance masks w.r.t. the `boxes`.
    gt_boxes: a tensor with a shape of [batch_size, M, 4]. The last dimension is
      the pixel coordinates in [ymin, xmin, ymax, xmax] form.
    gt_masks: a float tensor with a shape of [batch_size, M, gt_mask_height,
      gt_mask_width] representing the instance masks w.r.t. the `gt_boxes`.
    output_size: two integers that represent the height and width of the output
      masks.
    mask_binarize_threshold: a float representing the threshold for binarizing
      mask values. Default value is 0.5.

  Returns:
    iou: a tensor with as a shape of [batch_size, N, M].
  """
  _, num_detections, mask_height, mask_width = masks.get_shape().as_list()
  _, num_gts, gt_mask_height, gt_mask_width = gt_masks.get_shape().as_list()
  output_height, output_width = output_size

  masks = tf.where(masks < 0, tf.zeros_like(masks), masks)
  gt_masks = tf.where(gt_masks < 0, tf.zeros_like(gt_masks), gt_masks)

  pasted_masks = tf.reshape(
      spatial_transform_ops.bilinear_resize_to_bbox(
          tf.reshape(masks, [-1, mask_height, mask_width]),
          tf.reshape(boxes, [-1, 4]),
          output_size,
      ),
      shape=[-1, num_detections, output_height, output_width],
  )
  pasted_gt_masks = tf.reshape(
      spatial_transform_ops.bilinear_resize_to_bbox(
          tf.reshape(gt_masks, [-1, gt_mask_height, gt_mask_width]),
          tf.reshape(gt_boxes, [-1, 4]),
          output_size,
      ),
      shape=[-1, num_gts, output_height, output_width],
  )
  # (batch_size, num_detections, output_height * output_width)
  flattened_binary_masks = tf.reshape(
      pasted_masks > mask_binarize_threshold,
      [-1, num_detections, output_height * output_width],
  )
  # (batch_size, num_gts, output_height * output_width)
  flattened_gt_binary_masks = tf.reshape(
      pasted_gt_masks > mask_binarize_threshold,
      [-1, num_gts, output_height * output_width],
  )
  # (batch_size, output_height * output_width, num_gts)
  flattened_gt_binary_masks = tf.transpose(flattened_gt_binary_masks, [0, 2, 1])

  flattened_binary_masks = tf.cast(flattened_binary_masks, tf.float32)
  flattened_gt_binary_masks = tf.cast(flattened_gt_binary_masks, tf.float32)

  # (batch_size, num_detections, num_gts)
  intersection = tf.matmul(flattened_binary_masks, flattened_gt_binary_masks)
  detection_area = tf.reduce_sum(flattened_binary_masks, axis=-1, keepdims=True)
  gt_area = tf.reduce_sum(flattened_gt_binary_masks, axis=-2, keepdims=True)
  union = detection_area + gt_area - intersection
  return tf.math.divide_no_nan(intersection, union), tf.math.divide_no_nan(
      intersection, detection_area
  )