Spaces:
Sleeping
Sleeping
File size: 10,270 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions for segmentations."""
import math
from typing import List, Tuple
# Import libraries
import cv2
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import spatial_transform_ops
def paste_instance_masks(masks: np.ndarray, detected_boxes: np.ndarray,
image_height: int, image_width: int) -> np.ndarray:
"""Paste instance masks to generate the image segmentation results.
Args:
masks: a numpy array of shape [N, mask_height, mask_width] representing the
instance masks w.r.t. the `detected_boxes`.
detected_boxes: a numpy array of shape [N, 4] representing the reference
bounding boxes.
image_height: an integer representing the height of the image.
image_width: an integer representing the width of the image.
Returns:
segms: a numpy array of shape [N, image_height, image_width] representing
the instance masks *pasted* on the image canvas.
"""
def expand_boxes(boxes: np.ndarray, scale: float) -> np.ndarray:
"""Expands an array of boxes by a given scale."""
# Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/boxes.py#L227 # pylint: disable=line-too-long
# The `boxes` in the reference implementation is in [x1, y1, x2, y2] form,
# whereas `boxes` here is in [x1, y1, w, h] form
w_half = boxes[:, 2] * 0.5
h_half = boxes[:, 3] * 0.5
x_c = boxes[:, 0] + w_half
y_c = boxes[:, 1] + h_half
w_half *= scale
h_half *= scale
boxes_exp = np.zeros(boxes.shape)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
# Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/test.py#L812 # pylint: disable=line-too-long
# To work around an issue with cv2.resize (it seems to automatically pad
# with repeated border values), we manually zero-pad the masks by 1 pixel
# prior to resizing back to the original image resolution. This prevents
# "top hat" artifacts. We therefore need to expand the reference boxes by an
# appropriate factor.
_, mask_height, mask_width = masks.shape
scale = max((mask_width + 2.0) / mask_width,
(mask_height + 2.0) / mask_height)
ref_boxes = expand_boxes(detected_boxes, scale)
ref_boxes = ref_boxes.astype(np.int32)
padded_mask = np.zeros((mask_height + 2, mask_width + 2), dtype=np.float32)
segms = []
for mask_ind, mask in enumerate(masks):
im_mask = np.zeros((image_height, image_width), dtype=np.uint8)
# Process mask inside bounding boxes.
padded_mask[1:-1, 1:-1] = mask[:, :]
ref_box = ref_boxes[mask_ind, :]
w = ref_box[2] - ref_box[0] + 1
h = ref_box[3] - ref_box[1] + 1
w = np.maximum(w, 1)
h = np.maximum(h, 1)
mask = cv2.resize(padded_mask, (w, h))
mask = np.array(mask > 0.5, dtype=np.uint8)
x_0 = min(max(ref_box[0], 0), image_width)
x_1 = min(max(ref_box[2] + 1, 0), image_width)
y_0 = min(max(ref_box[1], 0), image_height)
y_1 = min(max(ref_box[3] + 1, 0), image_height)
im_mask[y_0:y_1, x_0:x_1] = mask[
(y_0 - ref_box[1]):(y_1 - ref_box[1]),
(x_0 - ref_box[0]):(x_1 - ref_box[0])
]
segms.append(im_mask)
segms = np.array(segms)
assert masks.shape[0] == segms.shape[0]
return segms
def paste_instance_masks_v2(masks: np.ndarray, detected_boxes: np.ndarray,
image_height: int, image_width: int) -> np.ndarray:
"""Paste instance masks to generate the image segmentation (v2).
Args:
masks: a numpy array of shape [N, mask_height, mask_width] representing the
instance masks w.r.t. the `detected_boxes`.
detected_boxes: a numpy array of shape [N, 4] representing the reference
bounding boxes.
image_height: an integer representing the height of the image.
image_width: an integer representing the width of the image.
Returns:
segms: a numpy array of shape [N, image_height, image_width] representing
the instance masks *pasted* on the image canvas.
"""
_, mask_height, mask_width = masks.shape
segms = []
for i, mask in enumerate(masks):
box = detected_boxes[i, :]
xmin = box[0]
ymin = box[1]
xmax = xmin + box[2]
ymax = ymin + box[3]
# Sample points of the cropped mask w.r.t. the image grid.
# Note that these coordinates may fall beyond the image.
# Pixel clipping will happen after warping.
xmin_int = int(math.floor(xmin))
xmax_int = int(math.ceil(xmax))
ymin_int = int(math.floor(ymin))
ymax_int = int(math.ceil(ymax))
alpha = box[2] / (1.0 * mask_width)
beta = box[3] / (1.0 * mask_height)
# pylint: disable=invalid-name
# Transformation from mask pixel indices to image coordinate.
M_mask_to_image = np.array(
[[alpha, 0, xmin],
[0, beta, ymin],
[0, 0, 1]],
dtype=np.float32)
# Transformation from image to cropped mask coordinate.
M_image_to_crop = np.array(
[[1, 0, -xmin_int],
[0, 1, -ymin_int],
[0, 0, 1]],
dtype=np.float32)
M = np.dot(M_image_to_crop, M_mask_to_image)
# Compensate the half pixel offset that OpenCV has in the
# warpPerspective implementation: the top-left pixel is sampled
# at (0,0), but we want it to be at (0.5, 0.5).
M = np.dot(
np.dot(
np.array([[1, 0, -0.5],
[0, 1, -0.5],
[0, 0, 1]], np.float32),
M),
np.array([[1, 0, 0.5],
[0, 1, 0.5],
[0, 0, 1]], np.float32))
# pylint: enable=invalid-name
cropped_mask = cv2.warpPerspective(
mask.astype(np.float32), M,
(xmax_int - xmin_int, ymax_int - ymin_int))
cropped_mask = np.array(cropped_mask > 0.5, dtype=np.uint8)
img_mask = np.zeros((image_height, image_width))
x0 = max(min(xmin_int, image_width), 0)
x1 = max(min(xmax_int, image_width), 0)
y0 = max(min(ymin_int, image_height), 0)
y1 = max(min(ymax_int, image_height), 0)
img_mask[y0:y1, x0:x1] = cropped_mask[
(y0 - ymin_int):(y1 - ymin_int),
(x0 - xmin_int):(x1 - xmin_int)]
segms.append(img_mask)
segms = np.array(segms)
return segms
def instance_masks_overlap(
boxes: tf.Tensor,
masks: tf.Tensor,
gt_boxes: tf.Tensor,
gt_masks: tf.Tensor,
output_size: List[int],
mask_binarize_threshold: float = 0.5,
) -> Tuple[tf.Tensor, tf.Tensor]:
"""Calculates the IoUs and IoAs between the detection masks and the ground truth masks.
IoU: intersection over union.
IoA: intersection over the area of the detection masks.
Args:
boxes: a tensor with a shape of [batch_size, N, 4]. The last dimension is
the pixel coordinates in [ymin, xmin, ymax, xmax] form.
masks: a float tensor with a shape of [batch_size, N, mask_height,
mask_width] representing the instance masks w.r.t. the `boxes`.
gt_boxes: a tensor with a shape of [batch_size, M, 4]. The last dimension is
the pixel coordinates in [ymin, xmin, ymax, xmax] form.
gt_masks: a float tensor with a shape of [batch_size, M, gt_mask_height,
gt_mask_width] representing the instance masks w.r.t. the `gt_boxes`.
output_size: two integers that represent the height and width of the output
masks.
mask_binarize_threshold: a float representing the threshold for binarizing
mask values. Default value is 0.5.
Returns:
iou: a tensor with as a shape of [batch_size, N, M].
"""
_, num_detections, mask_height, mask_width = masks.get_shape().as_list()
_, num_gts, gt_mask_height, gt_mask_width = gt_masks.get_shape().as_list()
output_height, output_width = output_size
masks = tf.where(masks < 0, tf.zeros_like(masks), masks)
gt_masks = tf.where(gt_masks < 0, tf.zeros_like(gt_masks), gt_masks)
pasted_masks = tf.reshape(
spatial_transform_ops.bilinear_resize_to_bbox(
tf.reshape(masks, [-1, mask_height, mask_width]),
tf.reshape(boxes, [-1, 4]),
output_size,
),
shape=[-1, num_detections, output_height, output_width],
)
pasted_gt_masks = tf.reshape(
spatial_transform_ops.bilinear_resize_to_bbox(
tf.reshape(gt_masks, [-1, gt_mask_height, gt_mask_width]),
tf.reshape(gt_boxes, [-1, 4]),
output_size,
),
shape=[-1, num_gts, output_height, output_width],
)
# (batch_size, num_detections, output_height * output_width)
flattened_binary_masks = tf.reshape(
pasted_masks > mask_binarize_threshold,
[-1, num_detections, output_height * output_width],
)
# (batch_size, num_gts, output_height * output_width)
flattened_gt_binary_masks = tf.reshape(
pasted_gt_masks > mask_binarize_threshold,
[-1, num_gts, output_height * output_width],
)
# (batch_size, output_height * output_width, num_gts)
flattened_gt_binary_masks = tf.transpose(flattened_gt_binary_masks, [0, 2, 1])
flattened_binary_masks = tf.cast(flattened_binary_masks, tf.float32)
flattened_gt_binary_masks = tf.cast(flattened_gt_binary_masks, tf.float32)
# (batch_size, num_detections, num_gts)
intersection = tf.matmul(flattened_binary_masks, flattened_gt_binary_masks)
detection_area = tf.reduce_sum(flattened_binary_masks, axis=-1, keepdims=True)
gt_area = tf.reduce_sum(flattened_gt_binary_masks, axis=-2, keepdims=True)
union = detection_area + gt_area - intersection
return tf.math.divide_no_nan(intersection, union), tf.math.divide_no_nan(
intersection, detection_area
)
|