Spaces:
Sleeping
Sleeping
File size: 40,415 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocessing ops."""
import math
from typing import Optional, Sequence, Tuple, Union
from six.moves import range
import tensorflow as tf, tf_keras
from official.vision.ops import augment
from official.vision.ops import box_ops
CENTER_CROP_FRACTION = 0.875
# Calculated from the ImageNet training set
MEAN_NORM = (0.485, 0.456, 0.406)
STDDEV_NORM = (0.229, 0.224, 0.225)
MEAN_RGB = tuple(255 * i for i in MEAN_NORM)
STDDEV_RGB = tuple(255 * i for i in STDDEV_NORM)
MEDIAN_RGB = (128.0, 128.0, 128.0)
# Alias for convenience. PLEASE use `box_ops.horizontal_flip_boxes` directly.
horizontal_flip_boxes = box_ops.horizontal_flip_boxes
vertical_flip_boxes = box_ops.vertical_flip_boxes
def clip_or_pad_to_fixed_size(input_tensor, size, constant_values=0):
"""Pads data to a fixed length at the first dimension.
Args:
input_tensor: `Tensor` with any dimension.
size: `int` number for the first dimension of output Tensor.
constant_values: `int` value assigned to the paddings.
Returns:
`Tensor` with the first dimension padded to `size`.
"""
input_shape = input_tensor.get_shape().as_list()
padding_shape = []
# Computes the padding length on the first dimension, clip input tensor if it
# is longer than `size`.
input_length = tf.shape(input_tensor)[0]
input_length = tf.clip_by_value(input_length, 0, size)
input_tensor = input_tensor[:input_length]
padding_length = tf.maximum(0, size - input_length)
padding_shape.append(padding_length)
# Copies shapes of the rest of input shape dimensions.
for i in range(1, len(input_shape)):
padding_shape.append(tf.shape(input_tensor)[i])
# Pads input tensor to the fixed first dimension.
paddings = tf.cast(constant_values * tf.ones(padding_shape),
input_tensor.dtype)
padded_tensor = tf.concat([input_tensor, paddings], axis=0)
output_shape = input_shape
output_shape[0] = size
padded_tensor.set_shape(output_shape)
return padded_tensor
def normalize_image(image: tf.Tensor,
offset: Sequence[float] = MEAN_NORM,
scale: Sequence[float] = STDDEV_NORM) -> tf.Tensor:
"""Normalizes the image to zero mean and unit variance.
If the input image dtype is float, it is expected to either have values in
[0, 1) and offset is MEAN_NORM, or have values in [0, 255] and offset is
MEAN_RGB.
Args:
image: A tf.Tensor in either (1) float dtype with values in range [0, 1) or
[0, 255], or (2) int type with values in range [0, 255].
offset: A tuple of mean values to be subtracted from the image.
scale: A tuple of normalization factors.
Returns:
A normalized image tensor.
"""
with tf.name_scope('normalize_image'):
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
return normalize_scaled_float_image(image, offset, scale)
def normalize_scaled_float_image(image: tf.Tensor,
offset: Sequence[float] = MEAN_NORM,
scale: Sequence[float] = STDDEV_NORM):
"""Normalizes a scaled float image to zero mean and unit variance.
It assumes the input image is float dtype with values in [0, 1) if offset is
MEAN_NORM, values in [0, 255] if offset is MEAN_RGB.
Args:
image: A tf.Tensor in float32 dtype with values in range [0, 1) or [0, 255].
offset: A tuple of mean values to be subtracted from the image.
scale: A tuple of normalization factors.
Returns:
A normalized image tensor.
"""
offset = tf.constant(offset)
offset = tf.expand_dims(offset, axis=0)
offset = tf.expand_dims(offset, axis=0)
image -= offset
scale = tf.constant(scale)
scale = tf.expand_dims(scale, axis=0)
scale = tf.expand_dims(scale, axis=0)
image /= scale
return image
def compute_padded_size(desired_size, stride):
"""Compute the padded size given the desired size and the stride.
The padded size will be the smallest rectangle, such that each dimension is
the smallest multiple of the stride which is larger than the desired
dimension. For example, if desired_size = (100, 200) and stride = 32,
the output padded_size = (128, 224).
Args:
desired_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the target output image size.
stride: an integer, the stride of the backbone network.
Returns:
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size.
"""
if isinstance(desired_size, list) or isinstance(desired_size, tuple):
padded_size = [int(math.ceil(d * 1.0 / stride) * stride)
for d in desired_size]
else:
padded_size = tf.cast(
tf.math.ceil(
tf.cast(desired_size, dtype=tf.float32) / stride) * stride,
tf.int32)
return padded_size
def resize_and_crop_image(image,
desired_size,
padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
seed=1,
method=tf.image.ResizeMethod.BILINEAR,
keep_aspect_ratio=True):
"""Resizes the input image to output size (RetinaNet style).
Resize and pad images given the desired output size of the image and
stride size.
Here are the preprocessing steps.
1. For a given image, keep its aspect ratio and rescale the image to make it
the largest rectangle to be bounded by the rectangle specified by the
`desired_size`.
2. Pad the rescaled image to the padded_size.
Args:
image: a `Tensor` of shape [height, width, 3] representing an image.
desired_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the desired actual output image size.
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size. Padding will be applied
after scaling the image to the desired_size. Can be None to disable
padding.
aug_scale_min: a `float` with range between [0, 1.0] representing minimum
random scale applied to desired_size for training scale jittering.
aug_scale_max: a `float` with range between [1.0, inf] representing maximum
random scale applied to desired_size for training scale jittering.
seed: seed for random scale jittering.
method: function to resize input image to scaled image.
keep_aspect_ratio: whether or not to keep the aspect ratio when resizing.
Returns:
output_image: `Tensor` of shape [height, width, 3] where [height, width]
equals to `output_size`.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [desired_height, desired_width],
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
desired_width] is the actual scaled image size, and [y_scale, x_scale] is
the scaling factor, which is the ratio of
scaled dimension / original dimension.
"""
with tf.name_scope('resize_and_crop_image'):
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
random_jittering = (
isinstance(aug_scale_min, tf.Tensor)
or isinstance(aug_scale_max, tf.Tensor)
or not math.isclose(aug_scale_min, 1.0)
or not math.isclose(aug_scale_max, 1.0)
)
if random_jittering:
random_scale = tf.random.uniform(
[], aug_scale_min, aug_scale_max, seed=seed)
scaled_size = tf.round(random_scale * tf.cast(desired_size, tf.float32))
else:
scaled_size = tf.cast(desired_size, tf.float32)
if keep_aspect_ratio:
scale = tf.minimum(
scaled_size[0] / image_size[0], scaled_size[1] / image_size[1])
scaled_size = tf.round(image_size * scale)
# Computes 2D image_scale.
image_scale = scaled_size / image_size
# Selects non-zero random offset (x, y) if scaled image is larger than
# desired_size.
if random_jittering:
max_offset = scaled_size - tf.cast(desired_size, tf.float32)
max_offset = tf.where(
tf.less(max_offset, 0), tf.zeros_like(max_offset), max_offset)
offset = max_offset * tf.random.uniform([2,], 0, 1, seed=seed)
offset = tf.cast(offset, tf.int32)
else:
offset = tf.zeros((2,), tf.int32)
scaled_image = tf.image.resize(
image, tf.cast(scaled_size, tf.int32), method=method)
if random_jittering:
scaled_image = scaled_image[
offset[0]:offset[0] + desired_size[0],
offset[1]:offset[1] + desired_size[1], :]
output_image = scaled_image
if padded_size is not None:
output_image = tf.image.pad_to_bounding_box(
scaled_image, 0, 0, padded_size[0], padded_size[1])
image_info = tf.stack([
image_size,
tf.cast(desired_size, dtype=tf.float32),
image_scale,
tf.cast(offset, tf.float32)])
return output_image, image_info
def resize_and_crop_image_v2(image,
short_side,
long_side,
padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
seed=1,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes the input image to output size (Faster R-CNN style).
Resize and pad images given the specified short / long side length and the
stride size.
Here are the preprocessing steps.
1. For a given image, keep its aspect ratio and first try to rescale the short
side of the original image to `short_side`.
2. If the scaled image after 1 has a long side that exceeds `long_side`, keep
the aspect ratio and rescale the long side of the image to `long_side`.
3. (Optional) Apply random jittering according to `aug_scale_min` and
`aug_scale_max`. By default this step is skipped.
4. Pad the rescaled image to the padded_size.
Args:
image: a `Tensor` of shape [height, width, 3] representing an image.
short_side: a scalar `Tensor` or `int` representing the desired short side
to be rescaled to.
long_side: a scalar `Tensor` or `int` representing the desired long side to
be rescaled to.
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size.
aug_scale_min: a `float` with range between [0, 1.0] representing minimum
random scale applied for training scale jittering.
aug_scale_max: a `float` with range between [1.0, inf] representing maximum
random scale applied for training scale jittering.
seed: seed for random scale jittering.
method: function to resize input image to scaled image.
Returns:
output_image: `Tensor` of shape [height, width, 3] where [height, width]
equals to `output_size`.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [desired_height, desired_width],
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
desired_width] is the actual scaled image size, and [y_scale, x_scale] is
the scaling factor, which is the ratio of
scaled dimension / original dimension.
"""
with tf.name_scope('resize_and_crop_image_v2'):
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
scale_using_short_side = (
short_side / tf.math.minimum(image_size[0], image_size[1]))
scale_using_long_side = (
long_side / tf.math.maximum(image_size[0], image_size[1]))
scaled_size = tf.math.round(image_size * scale_using_short_side)
scaled_size = tf.where(
tf.math.greater(
tf.math.maximum(scaled_size[0], scaled_size[1]), long_side),
tf.math.round(image_size * scale_using_long_side),
scaled_size)
desired_size = scaled_size
random_jittering = (
isinstance(aug_scale_min, tf.Tensor)
or isinstance(aug_scale_max, tf.Tensor)
or not math.isclose(aug_scale_min, 1.0)
or not math.isclose(aug_scale_max, 1.0)
)
if random_jittering:
random_scale = tf.random.uniform(
[], aug_scale_min, aug_scale_max, seed=seed)
scaled_size = tf.math.round(random_scale * scaled_size)
# Computes 2D image_scale.
image_scale = scaled_size / image_size
# Selects non-zero random offset (x, y) if scaled image is larger than
# desired_size.
if random_jittering:
max_offset = scaled_size - desired_size
max_offset = tf.where(
tf.math.less(max_offset, 0), tf.zeros_like(max_offset), max_offset)
offset = max_offset * tf.random.uniform([2,], 0, 1, seed=seed)
offset = tf.cast(offset, tf.int32)
else:
offset = tf.zeros((2,), tf.int32)
scaled_image = tf.image.resize(
image, tf.cast(scaled_size, tf.int32), method=method)
if random_jittering:
scaled_image = scaled_image[
offset[0]:offset[0] + desired_size[0],
offset[1]:offset[1] + desired_size[1], :]
output_image = tf.image.pad_to_bounding_box(
scaled_image, 0, 0, padded_size[0], padded_size[1])
image_info = tf.stack([
image_size,
tf.cast(desired_size, dtype=tf.float32),
image_scale,
tf.cast(offset, tf.float32)])
return output_image, image_info
def resize_image(
image: tf.Tensor,
size: Union[Tuple[int, int], int],
max_size: Optional[int] = None,
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR):
"""Resize image with size and max_size.
Args:
image: the image to be resized.
size: if list to tuple, resize to it. If scalar, we keep the same
aspect ratio and resize the short side to the value.
max_size: only used when size is a scalar. When the larger side is larger
than max_size after resized with size we used max_size to keep the aspect
ratio instead.
method: the method argument passed to tf.image.resize.
Returns:
the resized image and image_info to be used for downstream processing.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [resized_height, resized_width],
[y_scale, x_scale], [0, 0]], where [resized_height, resized_width]
is the actual scaled image size, and [y_scale, x_scale] is the
scaling factor, which is the ratio of
scaled dimension / original dimension.
"""
def get_size_with_aspect_ratio(image_size, size, max_size=None):
h = image_size[0]
w = image_size[1]
if max_size is not None:
min_original_size = tf.cast(tf.math.minimum(w, h), dtype=tf.float32)
max_original_size = tf.cast(tf.math.maximum(w, h), dtype=tf.float32)
if max_original_size / min_original_size * size > max_size:
size = tf.cast(
tf.math.floor(max_size * min_original_size / max_original_size),
dtype=tf.int32)
else:
size = tf.cast(size, tf.int32)
else:
size = tf.cast(size, tf.int32)
if (w <= h and w == size) or (h <= w and h == size):
return tf.stack([h, w])
if w < h:
ow = size
oh = tf.cast(
(tf.cast(size, dtype=tf.float32) * tf.cast(h, dtype=tf.float32) /
tf.cast(w, dtype=tf.float32)),
dtype=tf.int32)
else:
oh = size
ow = tf.cast(
(tf.cast(size, dtype=tf.float32) * tf.cast(w, dtype=tf.float32) /
tf.cast(h, dtype=tf.float32)),
dtype=tf.int32)
return tf.stack([oh, ow])
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
orignal_size = tf.shape(image)[0:2]
size = get_size(orignal_size, size, max_size)
rescaled_image = tf.image.resize(
image, tf.cast(size, tf.int32), method=method)
image_scale = size / orignal_size
image_info = tf.stack([
tf.cast(orignal_size, dtype=tf.float32),
tf.cast(size, dtype=tf.float32),
tf.cast(image_scale, tf.float32),
tf.constant([0.0, 0.0], dtype=tf.float32)
])
return rescaled_image, image_info
def center_crop_image(
image, center_crop_fraction: float = CENTER_CROP_FRACTION):
"""Center crop a square shape slice from the input image.
It crops a square shape slice from the image. The side of the actual crop
is 224 / 256 = 0.875 of the short side of the original image. References:
[1] Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556
[2] Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385
Args:
image: a Tensor of shape [height, width, 3] representing the input image.
center_crop_fraction: a float of ratio between the side of the cropped image
and the short side of the original image
Returns:
cropped_image: a Tensor representing the center cropped image.
"""
with tf.name_scope('center_crop_image'):
image_size = tf.cast(tf.shape(image)[:2], dtype=tf.float32)
crop_size = (
center_crop_fraction * tf.math.minimum(image_size[0], image_size[1]))
crop_offset = tf.cast((image_size - crop_size) / 2.0, dtype=tf.int32)
crop_size = tf.cast(crop_size, dtype=tf.int32)
cropped_image = image[
crop_offset[0]:crop_offset[0] + crop_size,
crop_offset[1]:crop_offset[1] + crop_size, :]
return cropped_image
def center_crop_image_v2(
image_bytes, image_shape, center_crop_fraction: float = CENTER_CROP_FRACTION
):
"""Center crop a square shape slice from the input image.
It crops a square shape slice from the image. The side of the actual crop
is 224 / 256 = 0.875 of the short side of the original image. References:
[1] Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556
[2] Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385
This is a faster version of `center_crop_image` which takes the original
image bytes and image size as the inputs, and partially decode the JPEG
bytes according to the center crop.
Args:
image_bytes: a Tensor of type string representing the raw image bytes.
image_shape: a Tensor specifying the shape of the raw image.
center_crop_fraction: a float of ratio between the side of the cropped image
and the short side of the original image
Returns:
cropped_image: a Tensor representing the center cropped image.
"""
with tf.name_scope('center_image_crop_v2'):
image_shape = tf.cast(image_shape, tf.float32)
crop_size = center_crop_fraction * tf.math.minimum(
image_shape[0], image_shape[1]
)
crop_offset = tf.cast((image_shape - crop_size) / 2.0, dtype=tf.int32)
crop_size = tf.cast(crop_size, dtype=tf.int32)
crop_window = tf.stack(
[crop_offset[0], crop_offset[1], crop_size, crop_size])
cropped_image = tf.image.decode_and_crop_jpeg(
image_bytes, crop_window, channels=3)
return cropped_image
def random_crop_image(image,
aspect_ratio_range=(3. / 4., 4. / 3.),
area_range=(0.08, 1.0),
max_attempts=10,
seed=1):
"""Randomly crop an arbitrary shaped slice from the input image.
Args:
image: a Tensor of shape [height, width, 3] representing the input image.
aspect_ratio_range: a list of floats. The cropped area of the image must
have an aspect ratio = width / height within this range.
area_range: a list of floats. The cropped reas of the image must contain
a fraction of the input image within this range.
max_attempts: the number of attempts at generating a cropped region of the
image of the specified constraints. After max_attempts failures, return
the entire image.
seed: the seed of the random generator.
Returns:
cropped_image: a Tensor representing the random cropped image. Can be the
original image if max_attempts is exhausted.
"""
with tf.name_scope('random_crop_image'):
crop_offset, crop_size, _ = tf.image.sample_distorted_bounding_box(
tf.shape(image),
tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]),
seed=seed,
min_object_covered=area_range[0],
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts)
cropped_image = tf.slice(image, crop_offset, crop_size)
return cropped_image
def random_crop_image_v2(image_bytes,
image_shape,
aspect_ratio_range=(3. / 4., 4. / 3.),
area_range=(0.08, 1.0),
max_attempts=10,
seed=1):
"""Randomly crop an arbitrary shaped slice from the input image.
This is a faster version of `random_crop_image` which takes the original
image bytes and image size as the inputs, and partially decode the JPEG
bytes according to the generated crop.
Args:
image_bytes: a Tensor of type string representing the raw image bytes.
image_shape: a Tensor specifying the shape of the raw image.
aspect_ratio_range: a list of floats. The cropped area of the image must
have an aspect ratio = width / height within this range.
area_range: a list of floats. The cropped reas of the image must contain
a fraction of the input image within this range.
max_attempts: the number of attempts at generating a cropped region of the
image of the specified constraints. After max_attempts failures, return
the entire image.
seed: the seed of the random generator.
Returns:
cropped_image: a Tensor representing the random cropped image. Can be the
original image if max_attempts is exhausted.
"""
with tf.name_scope('random_crop_image_v2'):
crop_offset, crop_size, _ = tf.image.sample_distorted_bounding_box(
image_shape,
tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]),
seed=seed,
min_object_covered=area_range[0],
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts)
offset_y, offset_x, _ = tf.unstack(crop_offset)
crop_height, crop_width, _ = tf.unstack(crop_size)
crop_window = tf.stack([offset_y, offset_x, crop_height, crop_width])
cropped_image = tf.image.decode_and_crop_jpeg(
image_bytes, crop_window, channels=3)
return cropped_image
def resize_and_crop_boxes(boxes,
image_scale,
output_size,
offset):
"""Resizes boxes to output size with scale and offset.
Args:
boxes: `Tensor` of shape [N, 4] representing ground truth boxes.
image_scale: 2D float `Tensor` representing scale factors that apply to
[height, width] of input image.
output_size: 2D `Tensor` or `int` representing [height, width] of target
output image size.
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled
boxes.
Returns:
boxes: `Tensor` of shape [N, 4] representing the scaled boxes.
"""
with tf.name_scope('resize_and_crop_boxes'):
# Adjusts box coordinates based on image_scale and offset.
boxes *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
boxes -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
# Clips the boxes.
boxes = box_ops.clip_boxes(boxes, output_size)
return boxes
def resize_and_crop_masks(masks, image_scale, output_size, offset):
"""Resizes boxes to output size with scale and offset.
Args:
masks: `Tensor` of shape [N, H, W, C] representing ground truth masks.
image_scale: 2D float `Tensor` representing scale factors that apply to
[height, width] of input image.
output_size: 2D `Tensor` or `int` representing [height, width] of target
output image size.
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled
boxes.
Returns:
masks: `Tensor` of shape [N, H, W, C] representing the scaled masks.
"""
with tf.name_scope('resize_and_crop_masks'):
mask_size = tf.cast(tf.shape(masks)[1:3], tf.float32)
num_channels = tf.shape(masks)[3]
# Pad masks to avoid empty mask annotations.
masks = tf.concat([
tf.zeros([1, mask_size[0], mask_size[1], num_channels],
dtype=masks.dtype), masks
],
axis=0)
scaled_size = tf.cast(image_scale * mask_size, tf.int32)
scaled_masks = tf.image.resize(
masks, scaled_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
offset = tf.cast(offset, tf.int32)
scaled_masks = scaled_masks[
:,
offset[0]:offset[0] + output_size[0],
offset[1]:offset[1] + output_size[1],
:]
output_masks = tf.image.pad_to_bounding_box(
scaled_masks, 0, 0, output_size[0], output_size[1])
# Remove padding.
output_masks = output_masks[1::]
return output_masks
def horizontal_flip_image(image):
"""Flips image horizontally."""
return tf.image.flip_left_right(image)
def horizontal_flip_masks(masks):
"""Flips masks horizontally."""
return masks[:, :, ::-1]
def random_horizontal_flip(
image, normalized_boxes=None, masks=None, seed=1, prob=0.5
):
"""Randomly flips input image and bounding boxes horizontally."""
with tf.name_scope('random_horizontal_flip'):
do_flip = tf.less(tf.random.uniform([], seed=seed), prob)
image = tf.cond(
do_flip,
lambda: horizontal_flip_image(image),
lambda: image)
if normalized_boxes is not None:
normalized_boxes = tf.cond(
do_flip,
lambda: horizontal_flip_boxes(normalized_boxes),
lambda: normalized_boxes)
if masks is not None:
masks = tf.cond(
do_flip,
lambda: horizontal_flip_masks(masks),
lambda: masks)
return image, normalized_boxes, masks
def random_horizontal_flip_with_roi(
image: tf.Tensor,
boxes: Optional[tf.Tensor] = None,
masks: Optional[tf.Tensor] = None,
roi_boxes: Optional[tf.Tensor] = None,
seed: int = 1
) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[tf.Tensor],
Optional[tf.Tensor]]:
"""Randomly flips input image and bounding boxes horizontally.
Extends preprocess_ops.random_horizontal_flip to also flip roi_boxes used
by ViLD.
Args:
image: `tf.Tensor`, the image to apply the random flip.
boxes: `tf.Tensor` or `None`, boxes corresponding to the image.
masks: `tf.Tensor` or `None`, masks corresponding to the image.
roi_boxes: `tf.Tensor` or `None`, RoIs corresponding to the image.
seed: Seed for Tensorflow's random number generator.
Returns:
image: `tf.Tensor`, flipped image.
boxes: `tf.Tensor` or `None`, flipped boxes corresponding to the image.
masks: `tf.Tensor` or `None`, flipped masks corresponding to the image.
roi_boxes: `tf.Tensor` or `None`, flipped RoIs corresponding to the image.
"""
with tf.name_scope('random_horizontal_flip'):
do_flip = tf.greater(tf.random.uniform([], seed=seed), 0.5)
image = tf.cond(do_flip, lambda: horizontal_flip_image(image),
lambda: image)
if boxes is not None:
boxes = tf.cond(do_flip, lambda: horizontal_flip_boxes(boxes),
lambda: boxes)
if masks is not None:
masks = tf.cond(do_flip, lambda: horizontal_flip_masks(masks),
lambda: masks)
if roi_boxes is not None:
roi_boxes = tf.cond(do_flip, lambda: horizontal_flip_boxes(roi_boxes),
lambda: roi_boxes)
return image, boxes, masks, roi_boxes
def random_vertical_flip(
image, normalized_boxes=None, masks=None, seed=1, prob=0.5
):
"""Randomly flips input image and bounding boxes vertically."""
with tf.name_scope('random_vertical_flip'):
do_flip = tf.less(tf.random.uniform([], seed=seed), prob)
image = tf.cond(
do_flip,
lambda: tf.image.flip_up_down(image),
lambda: image)
if normalized_boxes is not None:
normalized_boxes = tf.cond(
do_flip,
lambda: vertical_flip_boxes(normalized_boxes),
lambda: normalized_boxes)
if masks is not None:
masks = tf.cond(
do_flip,
lambda: tf.image.flip_up_down(masks[..., None])[..., 0],
lambda: masks)
return image, normalized_boxes, masks
def color_jitter(image: tf.Tensor,
brightness: Optional[float] = 0.,
contrast: Optional[float] = 0.,
saturation: Optional[float] = 0.,
seed: Optional[int] = None) -> tf.Tensor:
"""Applies color jitter to an image, similarly to torchvision`s ColorJitter.
Args:
image (tf.Tensor): Of shape [height, width, 3] and type uint8.
brightness (float, optional): Magnitude for brightness jitter. Defaults to
0.
contrast (float, optional): Magnitude for contrast jitter. Defaults to 0.
saturation (float, optional): Magnitude for saturation jitter. Defaults to
0.
seed (int, optional): Random seed. Defaults to None.
Returns:
tf.Tensor: The augmented `image` of type uint8.
"""
image = tf.cast(image, dtype=tf.uint8)
image = random_brightness(image, brightness, seed=seed)
image = random_contrast(image, contrast, seed=seed)
image = random_saturation(image, saturation, seed=seed)
return image
def random_brightness(image: tf.Tensor,
brightness: float = 0.,
seed: Optional[int] = None) -> tf.Tensor:
"""Jitters brightness of an image.
Args:
image (tf.Tensor): Of shape [height, width, 3] and type uint8.
brightness (float, optional): Magnitude for brightness jitter. Defaults to
0.
seed (int, optional): Random seed. Defaults to None.
Returns:
tf.Tensor: The augmented `image` of type uint8.
"""
assert brightness >= 0, '`brightness` must be positive'
brightness = tf.random.uniform([],
max(0, 1 - brightness),
1 + brightness,
seed=seed,
dtype=tf.float32)
return augment.brightness(image, brightness)
def random_contrast(image: tf.Tensor,
contrast: float = 0.,
seed: Optional[int] = None) -> tf.Tensor:
"""Jitters contrast of an image, similarly to torchvision`s ColorJitter.
Args:
image (tf.Tensor): Of shape [height, width, 3] and type uint8.
contrast (float, optional): Magnitude for contrast jitter. Defaults to 0.
seed (int, optional): Random seed. Defaults to None.
Returns:
tf.Tensor: The augmented `image` of type uint8.
"""
assert contrast >= 0, '`contrast` must be positive'
contrast = tf.random.uniform([],
max(0, 1 - contrast),
1 + contrast,
seed=seed,
dtype=tf.float32)
return augment.contrast(image, contrast)
def random_saturation(image: tf.Tensor,
saturation: float = 0.,
seed: Optional[int] = None) -> tf.Tensor:
"""Jitters saturation of an image, similarly to torchvision`s ColorJitter.
Args:
image (tf.Tensor): Of shape [height, width, 3] and type uint8.
saturation (float, optional): Magnitude for saturation jitter. Defaults to
0.
seed (int, optional): Random seed. Defaults to None.
Returns:
tf.Tensor: The augmented `image` of type uint8.
"""
assert saturation >= 0, '`saturation` must be positive'
saturation = tf.random.uniform([],
max(0, 1 - saturation),
1 + saturation,
seed=seed,
dtype=tf.float32)
return _saturation(image, saturation)
def _saturation(image: tf.Tensor,
saturation: Optional[float] = 0.) -> tf.Tensor:
return augment.blend(
tf.repeat(tf.image.rgb_to_grayscale(image), 3, axis=-1), image,
saturation)
def random_crop_image_with_boxes_and_labels(img, boxes, labels, min_scale,
aspect_ratio_range,
min_overlap_params, max_retry):
"""Crops a random slice from the input image.
The function will correspondingly recompute the bounding boxes and filter out
outside boxes and their labels.
References:
[1] End-to-End Object Detection with Transformers
https://arxiv.org/abs/2005.12872
The preprocessing steps:
1. Sample a minimum IoU overlap.
2. For each trial, sample the new image width, height, and top-left corner.
3. Compute the IoUs of bounding boxes with the cropped image and retry if
the maximum IoU is below the sampled threshold.
4. Find boxes whose centers are in the cropped image.
5. Compute new bounding boxes in the cropped region and only select those
boxes' labels.
Args:
img: a 'Tensor' of shape [height, width, 3] representing the input image.
boxes: a 'Tensor' of shape [N, 4] representing the ground-truth bounding
boxes with (ymin, xmin, ymax, xmax).
labels: a 'Tensor' of shape [N,] representing the class labels of the boxes.
min_scale: a 'float' in [0.0, 1.0) indicating the lower bound of the random
scale variable.
aspect_ratio_range: a list of two 'float' that specifies the lower and upper
bound of the random aspect ratio.
min_overlap_params: a list of four 'float' representing the min value, max
value, step size, and offset for the minimum overlap sample.
max_retry: an 'int' representing the number of trials for cropping. If it is
exhausted, no cropping will be performed.
Returns:
img: a Tensor representing the random cropped image. Can be the
original image if max_retry is exhausted.
boxes: a Tensor representing the bounding boxes in the cropped image.
labels: a Tensor representing the new bounding boxes' labels.
"""
shape = tf.shape(img)
original_h = shape[0]
original_w = shape[1]
minval, maxval, step, offset = min_overlap_params
min_overlap = tf.math.floordiv(
tf.random.uniform([], minval=minval, maxval=maxval), step) * step - offset
min_overlap = tf.clip_by_value(min_overlap, 0.0, 1.1)
if min_overlap > 1.0:
return img, boxes, labels
aspect_ratio_low = aspect_ratio_range[0]
aspect_ratio_high = aspect_ratio_range[1]
for _ in tf.range(max_retry):
scale_h = tf.random.uniform([], min_scale, 1.0)
scale_w = tf.random.uniform([], min_scale, 1.0)
new_h = tf.cast(
scale_h * tf.cast(original_h, dtype=tf.float32), dtype=tf.int32)
new_w = tf.cast(
scale_w * tf.cast(original_w, dtype=tf.float32), dtype=tf.int32)
# Aspect ratio has to be in the prespecified range
aspect_ratio = new_h / new_w
if aspect_ratio_low > aspect_ratio or aspect_ratio > aspect_ratio_high:
continue
left = tf.random.uniform([], 0, original_w - new_w, dtype=tf.int32)
right = left + new_w
top = tf.random.uniform([], 0, original_h - new_h, dtype=tf.int32)
bottom = top + new_h
normalized_left = tf.cast(
left, dtype=tf.float32) / tf.cast(
original_w, dtype=tf.float32)
normalized_right = tf.cast(
right, dtype=tf.float32) / tf.cast(
original_w, dtype=tf.float32)
normalized_top = tf.cast(
top, dtype=tf.float32) / tf.cast(
original_h, dtype=tf.float32)
normalized_bottom = tf.cast(
bottom, dtype=tf.float32) / tf.cast(
original_h, dtype=tf.float32)
cropped_box = tf.expand_dims(
tf.stack([
normalized_top,
normalized_left,
normalized_bottom,
normalized_right,
]),
axis=0)
iou = box_ops.bbox_overlap(
tf.expand_dims(cropped_box, axis=0),
tf.expand_dims(boxes, axis=0)) # (1, 1, n_ground_truth)
iou = tf.squeeze(iou, axis=[0, 1])
# If not a single bounding box has a Jaccard overlap of greater than
# the minimum, try again
if tf.reduce_max(iou) < min_overlap:
continue
centroids = box_ops.yxyx_to_cycxhw(boxes)
mask = tf.math.logical_and(
tf.math.logical_and(centroids[:, 0] > normalized_top,
centroids[:, 0] < normalized_bottom),
tf.math.logical_and(centroids[:, 1] > normalized_left,
centroids[:, 1] < normalized_right))
# If not a single bounding box has its center in the crop, try again.
if tf.reduce_sum(tf.cast(mask, dtype=tf.int32)) > 0:
indices = tf.squeeze(tf.where(mask), axis=1)
filtered_boxes = tf.gather(boxes, indices)
boxes = tf.clip_by_value(
(filtered_boxes[..., :] * tf.cast(
tf.stack([original_h, original_w, original_h, original_w]),
dtype=tf.float32) -
tf.cast(tf.stack([top, left, top, left]), dtype=tf.float32)) /
tf.cast(tf.stack([new_h, new_w, new_h, new_w]), dtype=tf.float32),
0.0, 1.0)
img = tf.image.crop_to_bounding_box(img, top, left, bottom - top,
right - left)
labels = tf.gather(labels, indices)
break
return img, boxes, labels
def random_crop(image,
boxes,
labels,
min_scale=0.3,
aspect_ratio_range=(0.5, 2.0),
min_overlap_params=(0.0, 1.4, 0.2, 0.1),
max_retry=50,
seed=None):
"""Randomly crop the image and boxes, filtering labels.
Args:
image: a 'Tensor' of shape [height, width, 3] representing the input image.
boxes: a 'Tensor' of shape [N, 4] representing the ground-truth bounding
boxes with (ymin, xmin, ymax, xmax).
labels: a 'Tensor' of shape [N,] representing the class labels of the boxes.
min_scale: a 'float' in [0.0, 1.0) indicating the lower bound of the random
scale variable.
aspect_ratio_range: a list of two 'float' that specifies the lower and upper
bound of the random aspect ratio.
min_overlap_params: a list of four 'float' representing the min value, max
value, step size, and offset for the minimum overlap sample.
max_retry: an 'int' representing the number of trials for cropping. If it is
exhausted, no cropping will be performed.
seed: the random number seed of int, but could be None.
Returns:
image: a Tensor representing the random cropped image. Can be the
original image if max_retry is exhausted.
boxes: a Tensor representing the bounding boxes in the cropped image.
labels: a Tensor representing the new bounding boxes' labels.
"""
with tf.name_scope('random_crop'):
do_crop = tf.greater(tf.random.uniform([], seed=seed), 0.5)
if do_crop:
return random_crop_image_with_boxes_and_labels(image, boxes, labels,
min_scale,
aspect_ratio_range,
min_overlap_params,
max_retry)
else:
return image, boxes, labels
|