Spaces:
Sleeping
Sleeping
File size: 40,266 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A set of functions that are used for visualization.
These functions often receive an image, perform some visualization on the image.
The functions do not return a value, instead they modify the image itself.
"""
import collections
import functools
from typing import Any, Dict, Optional, List, Union
from absl import logging
# Set headless-friendly backend.
import matplotlib
matplotlib.use('Agg') # pylint: disable=multiple-statements
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
import numpy as np
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
import six
import tensorflow as tf, tf_keras
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
from official.vision.utils.object_detection import shape_utils
_TITLE_LEFT_MARGIN = 10
_TITLE_TOP_MARGIN = 10
STANDARD_COLORS = [
'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
'WhiteSmoke', 'Yellow', 'YellowGreen'
]
def save_image_array_as_png(image, output_path):
"""Saves an image (represented as a numpy array) to PNG.
Args:
image: a numpy array with shape [height, width, 3].
output_path: path to which image should be written.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
with tf.io.gfile.GFile(output_path, 'w') as fid:
image_pil.save(fid, 'PNG')
def encode_image_array_as_png_str(image):
"""Encodes a numpy array into a PNG string.
Args:
image: a numpy array with shape [height, width, 3].
Returns:
PNG encoded image string.
"""
image_pil = Image.fromarray(np.uint8(image))
output = six.BytesIO()
image_pil.save(output, format='PNG')
png_string = output.getvalue()
output.close()
return png_string
def visualize_images_with_bounding_boxes(images, box_outputs, step,
summary_writer):
"""Records subset of evaluation images with bounding boxes."""
if not isinstance(images, list):
logging.warning(
'visualize_images_with_bounding_boxes expects list of '
'images but received type: %s and value: %s', type(images), images)
return
image_shape = tf.shape(images[0])
image_height = tf.cast(image_shape[0], tf.float32)
image_width = tf.cast(image_shape[1], tf.float32)
normalized_boxes = box_ops.normalize_boxes(box_outputs,
[image_height, image_width])
bounding_box_color = tf.constant([[1.0, 1.0, 0.0, 1.0]])
image_summary = tf.image.draw_bounding_boxes(
tf.cast(images, tf.float32), normalized_boxes, bounding_box_color)
with summary_writer.as_default():
tf.summary.image('bounding_box_summary', image_summary, step=step)
summary_writer.flush()
def draw_bounding_box_on_image_array(image,
ymin,
xmin,
ymax,
xmax,
color='red',
thickness=4,
display_str_list=(),
use_normalized_coordinates=True):
"""Adds a bounding box to an image (numpy array).
Bounding box coordinates can be specified in either absolute (pixel) or
normalized coordinates by setting the use_normalized_coordinates argument.
Args:
image: a numpy array with shape [height, width, 3].
ymin: ymin of bounding box.
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list: list of strings to display in box (each to be shown on its
own line).
use_normalized_coordinates: If True (default), treat coordinates ymin, xmin,
ymax, xmax as relative to the image. Otherwise treat coordinates as
absolute.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
thickness, display_str_list,
use_normalized_coordinates)
np.copyto(image, np.array(image_pil))
def draw_bounding_box_on_image(image,
ymin,
xmin,
ymax,
xmax,
color='red',
thickness=4,
display_str_list=(),
use_normalized_coordinates=True):
"""Adds a bounding box to an image.
Bounding box coordinates can be specified in either absolute (pixel) or
normalized coordinates by setting the use_normalized_coordinates argument.
Each string in display_str_list is displayed on a separate line above the
bounding box in black text on a rectangle filled with the input 'color'.
If the top of the bounding box extends to the edge of the image, the strings
are displayed below the bounding box.
Args:
image: a PIL.Image object.
ymin: ymin of bounding box.
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list: list of strings to display in box (each to be shown on its
own line).
use_normalized_coordinates: If True (default), treat coordinates ymin, xmin,
ymax, xmax as relative to the image. Otherwise treat coordinates as
absolute.
"""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
if use_normalized_coordinates:
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
else:
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)
try:
font = ImageFont.truetype('arial.ttf', 24)
except IOError:
font = ImageFont.load_default()
# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
if hasattr(font, 'getsize'):
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
else:
display_str_heights = [font.getbbox(ds)[3] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = bottom + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
try:
if hasattr(font, 'getsize'):
text_width, text_height = font.getsize(display_str)
else:
text_width, text_height = font.getbbox(display_str)[2:4]
margin = np.ceil(0.05 * text_height)
draw.rectangle(
[
(left, text_bottom - text_height - 2 * margin),
(left + text_width, text_bottom),
],
fill=color,
)
draw.text(
(left + margin, text_bottom - text_height - margin),
display_str,
fill='black',
font=font,
)
except ValueError:
pass
text_bottom -= text_height - 2 * margin
def draw_bounding_boxes_on_image_array(image,
boxes,
color='red',
thickness=4,
display_str_list_list=()):
"""Draws bounding boxes on image (numpy array).
Args:
image: a numpy array object.
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The
coordinates are in normalized format between [0, 1].
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list_list: list of list of strings. a list of strings for each
bounding box. The reason to pass a list of strings for a bounding box is
that it might contain multiple labels.
Raises:
ValueError: if boxes is not a [N, 4] array
"""
image_pil = Image.fromarray(image)
draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
display_str_list_list)
np.copyto(image, np.array(image_pil))
def draw_bounding_boxes_on_image(image,
boxes,
color='red',
thickness=4,
display_str_list_list=()):
"""Draws bounding boxes on image.
Args:
image: a PIL.Image object.
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The
coordinates are in normalized format between [0, 1].
color: color to draw bounding box. Default is red.
thickness: line thickness. Default value is 4.
display_str_list_list: list of list of strings. a list of strings for each
bounding box. The reason to pass a list of strings for a bounding box is
that it might contain multiple labels.
Raises:
ValueError: if boxes is not a [N, 4] array
"""
boxes_shape = boxes.shape
if not boxes_shape:
return
if len(boxes_shape) != 2 or boxes_shape[1] != 4:
raise ValueError('Input must be of size [N, 4]')
for i in range(boxes_shape[0]):
display_str_list = ()
if display_str_list_list:
display_str_list = display_str_list_list[i]
draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
boxes[i, 3], color, thickness, display_str_list)
def _visualize_boxes(image, boxes, classes, scores, category_index, **kwargs):
return visualize_boxes_and_labels_on_image_array(
image, boxes, classes, scores, category_index=category_index, **kwargs)
def _visualize_boxes_and_masks(image, boxes, classes, scores, masks,
category_index, **kwargs):
return visualize_boxes_and_labels_on_image_array(
image,
boxes,
classes,
scores,
category_index=category_index,
instance_masks=masks,
**kwargs)
def _visualize_boxes_and_keypoints(image, boxes, classes, scores, keypoints,
category_index, **kwargs):
return visualize_boxes_and_labels_on_image_array(
image,
boxes,
classes,
scores,
category_index=category_index,
keypoints=keypoints,
**kwargs)
def _visualize_boxes_and_masks_and_keypoints(image, boxes, classes, scores,
masks, keypoints, category_index,
**kwargs):
return visualize_boxes_and_labels_on_image_array(
image,
boxes,
classes,
scores,
category_index=category_index,
instance_masks=masks,
keypoints=keypoints,
**kwargs)
def _resize_original_image(image, image_shape):
image = tf.expand_dims(image, 0)
image = tf.image.resize(
image, image_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return tf.cast(tf.squeeze(image, 0), tf.uint8)
def visualize_outputs(
logs,
task_config,
original_image_spatial_shape=None,
true_image_shape=None,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=False,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
key: str = 'image/validation_outputs',
) -> Dict[str, Any]:
"""Visualizes the detection outputs.
It extracts images and predictions from logs and draws visualization on input
images. By default, it requires `detection_boxes`, `detection_classes` and
`detection_scores` in the prediction, and optionally accepts
`detection_keypoints` and `detection_masks`.
Args:
logs: A dictionaty of log that contains images and predictions.
task_config: A task config.
original_image_spatial_shape: A [N, 2] tensor containing the spatial size of
the original image.
true_image_shape: A [N, 3] tensor containing the spatial size of unpadded
original_image.
max_boxes_to_draw: The maximum number of boxes to draw on an image. Default
20.
min_score_thresh: The minimum score threshold for visualization. Default
0.2.
use_normalized_coordinates: Whether to assume boxes and kepoints are in
normalized coordinates (as opposed to absolute coordiantes). Default is
False.
image_mean: An optional float or list of floats used as the mean pixel value
to normalize images.
image_std: An optional float or list of floats used as the std to normalize
images.
key: A string specifying the key of the returned dictionary.
Returns:
A dictionary of images with visualization drawn on it. Each key corresponds
to a 4D tensor with predictions (boxes, segments and/or keypoints) drawn
on each image.
"""
images = logs['image']
boxes = logs['detection_boxes']
classes = tf.cast(logs['detection_classes'], dtype=tf.int32)
scores = logs['detection_scores']
num_classes = task_config.model.num_classes
keypoints = (
logs['detection_keypoints'] if 'detection_keypoints' in logs else None
)
instance_masks = (
logs['detection_masks'] if 'detection_masks' in logs else None
)
category_index = {}
for i in range(1, num_classes + 1):
category_index[i] = {'id': i, 'name': str(i)}
def _denormalize_images(images: tf.Tensor) -> tf.Tensor:
if image_mean is None and image_std is None:
images *= tf.constant(
preprocess_ops.STDDEV_RGB, shape=[1, 1, 3], dtype=images.dtype
)
images += tf.constant(
preprocess_ops.MEAN_RGB, shape=[1, 1, 3], dtype=images.dtype
)
elif image_mean is not None and image_std is not None:
if isinstance(image_mean, float) and isinstance(image_std, float):
images = images * image_std + image_mean
elif isinstance(image_mean, list) and isinstance(image_std, list):
images *= tf.constant(image_std, shape=[1, 1, 3], dtype=images.dtype)
images += tf.constant(image_mean, shape=[1, 1, 3], dtype=images.dtype)
else:
raise ValueError(
'`image_mean` and `image_std` should be the same type.'
)
else:
raise ValueError(
'Both `image_mean` and `image_std` should be set or None at the same '
'time.'
)
return tf.cast(images, dtype=tf.uint8)
images = tf.nest.map_structure(
tf.identity,
tf.map_fn(
_denormalize_images,
elems=images,
fn_output_signature=tf.TensorSpec(
shape=images.shape.as_list()[1:], dtype=tf.uint8
),
parallel_iterations=32,
),
)
images_with_boxes = draw_bounding_boxes_on_image_tensors(
images,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape,
true_image_shape,
instance_masks,
keypoints,
max_boxes_to_draw,
min_score_thresh,
use_normalized_coordinates,
)
outputs = {}
for i, image in enumerate(images_with_boxes):
outputs[key + f'/{i}'] = image[None, ...]
return outputs
def draw_bounding_boxes_on_image_tensors(images,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=None,
true_image_shape=None,
instance_masks=None,
keypoints=None,
max_boxes_to_draw=20,
min_score_thresh=0.2,
use_normalized_coordinates=True):
"""Draws bounding boxes, masks, and keypoints on batch of image tensors.
Args:
images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
channels will be ignored. If C = 1, then we convert the images to RGB
images.
boxes: [N, max_detections, 4] float32 tensor of detection boxes.
classes: [N, max_detections] int tensor of detection classes. Note that
classes are 1-indexed.
scores: [N, max_detections] float32 tensor of detection scores.
category_index: a dict that maps integer ids to category dicts. e.g.
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
original_image_spatial_shape: [N, 2] tensor containing the spatial size of
the original image.
true_image_shape: [N, 3] tensor containing the spatial size of unpadded
original_image.
instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
instance masks.
keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
with keypoints.
max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
min_score_thresh: Minimum score threshold for visualization. Default 0.2.
use_normalized_coordinates: Whether to assume boxes and kepoints are in
normalized coordinates (as opposed to absolute coordiantes). Default is
True.
Returns:
4D image tensor of type uint8, with boxes drawn on top.
"""
# Additional channels are being ignored.
if images.shape[3] > 3:
images = images[:, :, :, 0:3]
elif images.shape[3] == 1:
images = tf.image.grayscale_to_rgb(images)
visualization_keyword_args = {
'use_normalized_coordinates': use_normalized_coordinates,
'max_boxes_to_draw': max_boxes_to_draw,
'min_score_thresh': min_score_thresh,
'agnostic_mode': False,
'line_thickness': 4
}
if true_image_shape is None:
true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
else:
true_shapes = true_image_shape
if original_image_spatial_shape is None:
original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
else:
original_shapes = original_image_spatial_shape
if instance_masks is not None and keypoints is None:
visualize_boxes_fn = functools.partial(
_visualize_boxes_and_masks,
category_index=category_index,
**visualization_keyword_args)
elems = [
true_shapes, original_shapes, images, boxes, classes, scores,
instance_masks
]
elif instance_masks is None and keypoints is not None:
visualize_boxes_fn = functools.partial(
_visualize_boxes_and_keypoints,
category_index=category_index,
**visualization_keyword_args)
elems = [
true_shapes, original_shapes, images, boxes, classes, scores, keypoints
]
elif instance_masks is not None and keypoints is not None:
visualize_boxes_fn = functools.partial(
_visualize_boxes_and_masks_and_keypoints,
category_index=category_index,
**visualization_keyword_args)
elems = [
true_shapes, original_shapes, images, boxes, classes, scores,
instance_masks, keypoints
]
else:
visualize_boxes_fn = functools.partial(
_visualize_boxes,
category_index=category_index,
**visualization_keyword_args)
elems = [true_shapes, original_shapes, images, boxes, classes, scores]
def draw_boxes(image_and_detections):
"""Draws boxes on image."""
true_shape = image_and_detections[0]
original_shape = image_and_detections[1]
if true_image_shape is not None:
image = shape_utils.pad_or_clip_nd(image_and_detections[2],
[true_shape[0], true_shape[1], 3])
if original_image_spatial_shape is not None:
image_and_detections[2] = _resize_original_image(image, original_shape)
image_with_boxes = tf.compat.v1.py_func(visualize_boxes_fn,
image_and_detections[2:], tf.uint8)
return image_with_boxes
images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False)
return images
def draw_keypoints_on_image_array(image,
keypoints,
color='red',
radius=2,
use_normalized_coordinates=True):
"""Draws keypoints on an image (numpy array).
Args:
image: a numpy array with shape [height, width, 3].
keypoints: a numpy array with shape [num_keypoints, 2].
color: color to draw the keypoints with. Default is red.
radius: keypoint radius. Default value is 2.
use_normalized_coordinates: if True (default), treat keypoint values as
relative to the image. Otherwise treat them as absolute.
"""
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
draw_keypoints_on_image(image_pil, keypoints, color, radius,
use_normalized_coordinates)
np.copyto(image, np.array(image_pil))
def draw_keypoints_on_image(image,
keypoints,
color='red',
radius=2,
use_normalized_coordinates=True):
"""Draws keypoints on an image.
Args:
image: a PIL.Image object.
keypoints: a numpy array with shape [num_keypoints, 2].
color: color to draw the keypoints with. Default is red.
radius: keypoint radius. Default value is 2.
use_normalized_coordinates: if True (default), treat keypoint values as
relative to the image. Otherwise treat them as absolute.
"""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
keypoints_x = [k[1] for k in keypoints]
keypoints_y = [k[0] for k in keypoints]
if use_normalized_coordinates:
keypoints_x = tuple([im_width * x for x in keypoints_x])
keypoints_y = tuple([im_height * y for y in keypoints_y])
for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
(keypoint_x + radius, keypoint_y + radius)],
outline=color,
fill=color)
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
"""Draws mask on an image.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
mask: a uint8 numpy array of shape (img_height, img_height) with values
between either 0 or 1.
color: color to draw the keypoints with. Default is red.
alpha: transparency value between 0 and 1. (default: 0.4)
Raises:
ValueError: On incorrect data type for image or masks.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if mask.dtype != np.uint8:
raise ValueError('`mask` not of type np.uint8')
if np.any(np.logical_and(mask != 1, mask != 0)):
raise ValueError('`mask` elements should be in [0, 1]')
if image.shape[:2] != mask.shape:
raise ValueError('The image has spatial dimensions %s but the mask has '
'dimensions %s' % (image.shape[:2], mask.shape))
rgb = ImageColor.getrgb(color)
pil_image = Image.fromarray(image)
solid_color = np.expand_dims(
np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L')
pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
np.copyto(image, np.array(pil_image.convert('RGB')))
def visualize_boxes_and_labels_on_image_array(
image,
boxes,
classes,
scores,
category_index,
instance_masks=None,
instance_boundaries=None,
keypoints=None,
use_normalized_coordinates=False,
max_boxes_to_draw=20,
min_score_thresh=.5,
agnostic_mode=False,
line_thickness=4,
groundtruth_box_visualization_color='black',
skip_scores=False,
skip_labels=False):
"""Overlay labeled boxes on an image with formatted scores and label names.
This function groups boxes that correspond to the same location
and creates a display string for each detection and overlays these
on the image. Note that this function modifies the image in place, and returns
that same image.
Args:
image: uint8 numpy array with shape (img_height, img_width, 3)
boxes: a numpy array of shape [N, 4]
classes: a numpy array of shape [N]. Note that class indices are 1-based,
and match the keys in the label map.
scores: a numpy array of shape [N] or None. If scores=None, then this
function assumes that the boxes to be plotted are groundtruth boxes and
plot all boxes as black with no classes or scores.
category_index: a dict containing category dictionaries (each holding
category index `id` and category name `name`) keyed by category indices.
instance_masks: a numpy array of shape [N, image_height, image_width] with
values ranging between 0 and 1, can be None.
instance_boundaries: a numpy array of shape [N, image_height, image_width]
with values ranging between 0 and 1, can be None.
keypoints: a numpy array of shape [N, num_keypoints, 2], can be None
use_normalized_coordinates: whether boxes is to be interpreted as normalized
coordinates or not.
max_boxes_to_draw: maximum number of boxes to visualize. If None, draw all
boxes.
min_score_thresh: minimum score threshold for a box to be visualized
agnostic_mode: boolean (default: False) controlling whether to evaluate in
class-agnostic mode or not. This mode will display scores but ignore
classes.
line_thickness: integer (default: 4) controlling line width of the boxes.
groundtruth_box_visualization_color: box color for visualizing groundtruth
boxes
skip_scores: whether to skip score when drawing a single detection
skip_labels: whether to skip label when drawing a single detection
Returns:
uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
"""
# Create a display string (and color) for every box location, group any boxes
# that correspond to the same location.
box_to_display_str_map = collections.defaultdict(list)
box_to_color_map = collections.defaultdict(str)
box_to_instance_masks_map = {}
box_to_instance_boundaries_map = {}
box_to_keypoints_map = collections.defaultdict(list)
if not max_boxes_to_draw:
max_boxes_to_draw = boxes.shape[0]
for i in range(min(max_boxes_to_draw, boxes.shape[0])):
if scores is None or scores[i] > min_score_thresh:
box = tuple(boxes[i].tolist())
if instance_masks is not None:
box_to_instance_masks_map[box] = instance_masks[i]
if instance_boundaries is not None:
box_to_instance_boundaries_map[box] = instance_boundaries[i]
if keypoints is not None:
box_to_keypoints_map[box].extend(keypoints[i])
if scores is None:
box_to_color_map[box] = groundtruth_box_visualization_color
else:
display_str = ''
if not skip_labels:
if not agnostic_mode:
if classes[i] in category_index.keys():
class_name = category_index[classes[i]]['name']
else:
class_name = 'N/A'
display_str = str(class_name)
if not skip_scores:
if not display_str:
display_str = '{}%'.format(int(100 * scores[i]))
else:
display_str = '{}: {}%'.format(display_str, int(100 * scores[i]))
box_to_display_str_map[box].append(display_str)
if agnostic_mode:
box_to_color_map[box] = 'DarkOrange'
else:
box_to_color_map[box] = STANDARD_COLORS[classes[i] %
len(STANDARD_COLORS)]
# Draw all boxes onto image.
for box, color in box_to_color_map.items():
ymin, xmin, ymax, xmax = box
if instance_masks is not None:
draw_mask_on_image_array(
image, box_to_instance_masks_map[box], color=color)
if instance_boundaries is not None:
draw_mask_on_image_array(
image, box_to_instance_boundaries_map[box], color='red', alpha=1.0)
draw_bounding_box_on_image_array(
image,
ymin,
xmin,
ymax,
xmax,
color=color,
thickness=line_thickness,
display_str_list=box_to_display_str_map[box],
use_normalized_coordinates=use_normalized_coordinates)
if keypoints is not None:
draw_keypoints_on_image_array(
image,
box_to_keypoints_map[box],
color=color,
radius=line_thickness / 2,
use_normalized_coordinates=use_normalized_coordinates)
return image
def add_cdf_image_summary(values, name):
"""Adds a tf.summary.image for a CDF plot of the values.
Normalizes `values` such that they sum to 1, plots the cumulative distribution
function and creates a tf image summary.
Args:
values: a 1-D float32 tensor containing the values.
name: name for the image summary.
"""
def cdf_plot(values):
"""Numpy function to plot CDF."""
normalized_values = values / np.sum(values)
sorted_values = np.sort(normalized_values)
cumulative_values = np.cumsum(sorted_values)
fraction_of_examples = (
np.arange(cumulative_values.size, dtype=np.float32) /
cumulative_values.size)
fig = plt.figure(frameon=False)
ax = fig.add_subplot(1, 1, 1)
ax.plot(fraction_of_examples, cumulative_values)
ax.set_ylabel('cumulative normalized values')
ax.set_xlabel('fraction of examples')
fig.canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
image = np.fromstring(
fig.canvas.tostring_rgb(),
dtype='uint8').reshape(1, int(height), int(width), 3)
return image
cdf_plot = tf.compat.v1.py_func(cdf_plot, [values], tf.uint8)
tf.compat.v1.summary.image(name, cdf_plot)
def add_hist_image_summary(values, bins, name):
"""Adds a tf.summary.image for a histogram plot of the values.
Plots the histogram of values and creates a tf image summary.
Args:
values: a 1-D float32 tensor containing the values.
bins: bin edges which will be directly passed to np.histogram.
name: name for the image summary.
"""
def hist_plot(values, bins):
"""Numpy function to plot hist."""
fig = plt.figure(frameon=False)
ax = fig.add_subplot(1, 1, 1)
y, x = np.histogram(values, bins=bins)
ax.plot(x[:-1], y)
ax.set_ylabel('count')
ax.set_xlabel('value')
fig.canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
image = np.fromstring(
fig.canvas.tostring_rgb(),
dtype='uint8').reshape(1, int(height), int(width), 3)
return image
hist_plot = tf.compat.v1.py_func(hist_plot, [values, bins], tf.uint8)
tf.compat.v1.summary.image(name, hist_plot)
def update_detection_state(step_outputs=None) -> Dict[str, Any]:
"""Updates detection state to optionally add input image and predictions."""
state = {}
if step_outputs:
state['image'] = tf.concat(step_outputs['visualization'][0], axis=0)
state['detection_boxes'] = tf.concat(
step_outputs['visualization'][1]['detection_boxes'], axis=0
)
state['detection_classes'] = tf.concat(
step_outputs['visualization'][1]['detection_classes'], axis=0
)
state['detection_scores'] = tf.concat(
step_outputs['visualization'][1]['detection_scores'], axis=0
)
if 'detection_kpts' in step_outputs['visualization'][1]:
detection_keypoints = step_outputs['visualization'][1]['detection_kpts']
elif 'detection_keypoints' in step_outputs['visualization'][1]:
detection_keypoints = step_outputs['visualization'][1][
'detection_keypoints'
]
else:
detection_keypoints = None
if detection_keypoints is not None:
state['detection_keypoints'] = tf.concat(detection_keypoints, axis=0)
detection_masks = step_outputs['visualization'][1].get(
'detection_masks', None
)
if detection_masks:
state['detection_masks'] = tf.concat(detection_masks, axis=0)
return state
def update_segmentation_state(step_outputs=None) -> Dict[str, Any]:
"""Updates segmentation state to optionally add input image and predictions."""
state = {}
if step_outputs:
state['image'] = tf.concat(step_outputs['visualization'][0], axis=0)
state['logits'] = tf.concat(
step_outputs['visualization'][1]['logits'], axis=0
)
return state
def visualize_segmentation_outputs(
logs,
task_config,
original_image_spatial_shape=None,
true_image_shape=None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
key: str = 'image/validation_outputs',
) -> Dict[str, Any]:
"""Visualizes the detection outputs.
It extracts images and predictions from logs and draws visualization on input
images. By default, it requires `detection_boxes`, `detection_classes` and
`detection_scores` in the prediction, and optionally accepts
`detection_keypoints` and `detection_masks`.
Args:
logs: A dictionaty of log that contains images and predictions.
task_config: A task config.
original_image_spatial_shape: A [N, 2] tensor containing the spatial size of
the original image.
true_image_shape: A [N, 3] tensor containing the spatial size of unpadded
original_image.
image_mean: An optional float or list of floats used as the mean pixel value
to normalize images.
image_std: An optional float or list of floats used as the std to normalize
images.
key: A string specifying the key of the returned dictionary.
Returns:
A dictionary of images with visualization drawn on it. Each key corresponds
to a 4D tensor with segments drawn on each image.
"""
images = logs['image']
masks = np.argmax(logs['logits'], axis=-1)
num_classes = task_config.model.num_classes
def _denormalize_images(images: tf.Tensor) -> tf.Tensor:
if image_mean is None and image_std is None:
images *= tf.constant(
preprocess_ops.STDDEV_RGB, shape=[1, 1, 3], dtype=images.dtype
)
images += tf.constant(
preprocess_ops.MEAN_RGB, shape=[1, 1, 3], dtype=images.dtype
)
elif image_mean is not None and image_std is not None:
if isinstance(image_mean, float) and isinstance(image_std, float):
images = images * image_std + image_mean
elif isinstance(image_mean, list) and isinstance(image_std, list):
images *= tf.constant(image_std, shape=[1, 1, 3], dtype=images.dtype)
images += tf.constant(image_mean, shape=[1, 1, 3], dtype=images.dtype)
else:
raise ValueError(
'`image_mean` and `image_std` should be the same type.'
)
else:
raise ValueError(
'Both `image_mean` and `image_std` should be set or None at the same '
'time.'
)
return tf.cast(images, dtype=tf.uint8)
images = tf.nest.map_structure(
tf.identity,
tf.map_fn(
_denormalize_images,
elems=images,
fn_output_signature=tf.TensorSpec(
shape=images.shape.as_list()[1:], dtype=tf.uint8
),
parallel_iterations=32,
),
)
if images.shape[3] > 3:
images = images[:, :, :, 0:3]
elif images.shape[3] == 1:
images = tf.image.grayscale_to_rgb(images)
if true_image_shape is None:
true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
else:
true_shapes = true_image_shape
if original_image_spatial_shape is None:
original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
else:
original_shapes = original_image_spatial_shape
visualize_fn = functools.partial(_visualize_masks, num_classes=num_classes)
elems = [true_shapes, original_shapes, images, masks]
def draw_segments(image_and_segments):
"""Draws boxes on image."""
true_shape = image_and_segments[0]
original_shape = image_and_segments[1]
if true_image_shape is not None:
image = shape_utils.pad_or_clip_nd(
image_and_segments[2], [true_shape[0], true_shape[1], 3]
)
if original_image_spatial_shape is not None:
image_and_segments[2] = _resize_original_image(image, original_shape)
image_with_boxes = tf.compat.v1.py_func(
visualize_fn, image_and_segments[2:], tf.uint8
)
return image_with_boxes
images_with_segments = tf.map_fn(
draw_segments, elems, dtype=tf.uint8, back_prop=False
)
outputs = {}
for i, image in enumerate(images_with_segments):
outputs[key + f'/{i}'] = image[None, ...]
return outputs
def _visualize_masks(image, mask, num_classes, alpha=0.4):
"""Visualizes semantic segmentation masks."""
solid_color = np.repeat(
np.expand_dims(np.zeros_like(mask), axis=2), 3, axis=2
)
for i in range(num_classes):
color = STANDARD_COLORS[i % len(STANDARD_COLORS)]
rgb = ImageColor.getrgb(color)
one_class_mask = np.where(mask == i, 1, 0)
solid_color = solid_color + np.expand_dims(
one_class_mask, axis=2
) * np.reshape(list(rgb), [1, 1, 3])
pil_image = Image.fromarray(image)
pil_solid_color = (
Image.fromarray(np.uint8(solid_color))
.convert('RGBA')
.resize(pil_image.size)
)
pil_mask = (
Image.fromarray(np.uint8(255.0 * alpha * np.ones_like(mask)))
.convert('L')
.resize(pil_image.size)
)
pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
np.copyto(image, np.array(pil_image.convert('RGB')))
return image
|