Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Util functions related to pycocotools and COCO eval.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import copy | |
import json | |
from absl import logging | |
import numpy as np | |
from PIL import Image | |
from pycocotools import coco | |
from pycocotools import mask as mask_api | |
import six | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.dataloader import tf_example_decoder | |
from official.legacy.detection.utils import box_utils | |
from official.legacy.detection.utils import mask_utils | |
class COCOWrapper(coco.COCO): | |
"""COCO wrapper class. | |
This class wraps COCO API object, which provides the following additional | |
functionalities: | |
1. Support string type image id. | |
2. Support loading the groundtruth dataset using the external annotation | |
dictionary. | |
3. Support loading the prediction results using the external annotation | |
dictionary. | |
""" | |
def __init__(self, eval_type='box', annotation_file=None, gt_dataset=None): | |
"""Instantiates a COCO-style API object. | |
Args: | |
eval_type: either 'box' or 'mask'. | |
annotation_file: a JSON file that stores annotations of the eval dataset. | |
This is required if `gt_dataset` is not provided. | |
gt_dataset: the groundtruth eval datatset in COCO API format. | |
""" | |
if ((annotation_file and gt_dataset) or | |
((not annotation_file) and (not gt_dataset))): | |
raise ValueError('One and only one of `annotation_file` and `gt_dataset` ' | |
'needs to be specified.') | |
if eval_type not in ['box', 'mask']: | |
raise ValueError('The `eval_type` can only be either `box` or `mask`.') | |
coco.COCO.__init__(self, annotation_file=annotation_file) | |
self._eval_type = eval_type | |
if gt_dataset: | |
self.dataset = gt_dataset | |
self.createIndex() | |
def loadRes(self, predictions): | |
"""Loads result file and return a result api object. | |
Args: | |
predictions: a list of dictionary each representing an annotation in COCO | |
format. The required fields are `image_id`, `category_id`, `score`, | |
`bbox`, `segmentation`. | |
Returns: | |
res: result COCO api object. | |
Raises: | |
ValueError: if the set of image id from predctions is not the subset of | |
the set of image id of the groundtruth dataset. | |
""" | |
res = coco.COCO() | |
res.dataset['images'] = copy.deepcopy(self.dataset['images']) | |
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
image_ids = [ann['image_id'] for ann in predictions] | |
if set(image_ids) != (set(image_ids) & set(self.getImgIds())): | |
raise ValueError('Results do not correspond to the current dataset!') | |
for ann in predictions: | |
x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2], | |
ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]] | |
if self._eval_type == 'box': | |
ann['area'] = ann['bbox'][2] * ann['bbox'][3] | |
ann['segmentation'] = [ | |
[x1, y1, x1, y2, x2, y2, x2, y1]] | |
elif self._eval_type == 'mask': | |
ann['area'] = mask_api.area(ann['segmentation']) | |
res.dataset['annotations'] = copy.deepcopy(predictions) | |
res.createIndex() | |
return res | |
def convert_predictions_to_coco_annotations(predictions): | |
"""Converts a batch of predictions to annotations in COCO format. | |
Args: | |
predictions: a dictionary of lists of numpy arrays including the following | |
fields. K below denotes the maximum number of instances per image. | |
Required fields: | |
- source_id: a list of numpy arrays of int or string of shape | |
[batch_size]. | |
- num_detections: a list of numpy arrays of int of shape [batch_size]. | |
- detection_boxes: a list of numpy arrays of float of shape | |
[batch_size, K, 4], where coordinates are in the original image | |
space (not the scaled image space). | |
- detection_classes: a list of numpy arrays of int of shape | |
[batch_size, K]. | |
- detection_scores: a list of numpy arrays of float of shape | |
[batch_size, K]. | |
Optional fields: | |
- detection_masks: a list of numpy arrays of float of shape | |
[batch_size, K, mask_height, mask_width]. | |
Returns: | |
coco_predictions: prediction in COCO annotation format. | |
""" | |
coco_predictions = [] | |
num_batches = len(predictions['source_id']) | |
batch_size = predictions['source_id'][0].shape[0] | |
max_num_detections = predictions['detection_classes'][0].shape[1] | |
use_outer_box = 'detection_outer_boxes' in predictions | |
for i in range(num_batches): | |
predictions['detection_boxes'][i] = box_utils.yxyx_to_xywh( | |
predictions['detection_boxes'][i]) | |
if use_outer_box: | |
predictions['detection_outer_boxes'][i] = box_utils.yxyx_to_xywh( | |
predictions['detection_outer_boxes'][i]) | |
mask_boxes = predictions['detection_outer_boxes'] | |
else: | |
mask_boxes = predictions['detection_boxes'] | |
for j in range(batch_size): | |
if 'detection_masks' in predictions: | |
image_masks = mask_utils.paste_instance_masks( | |
predictions['detection_masks'][i][j], | |
mask_boxes[i][j], | |
int(predictions['image_info'][i][j, 0, 0]), | |
int(predictions['image_info'][i][j, 0, 1])) | |
binary_masks = (image_masks > 0.0).astype(np.uint8) | |
encoded_masks = [ | |
mask_api.encode(np.asfortranarray(binary_mask)) | |
for binary_mask in list(binary_masks)] | |
for k in range(max_num_detections): | |
ann = {} | |
ann['image_id'] = predictions['source_id'][i][j] | |
ann['category_id'] = predictions['detection_classes'][i][j, k] | |
ann['bbox'] = predictions['detection_boxes'][i][j, k] | |
ann['score'] = predictions['detection_scores'][i][j, k] | |
if 'detection_masks' in predictions: | |
ann['segmentation'] = encoded_masks[k] | |
coco_predictions.append(ann) | |
for i, ann in enumerate(coco_predictions): | |
ann['id'] = i + 1 | |
return coco_predictions | |
def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None): | |
"""Converts groundtruths to the dataset in COCO format. | |
Args: | |
groundtruths: a dictionary of numpy arrays including the fields below. | |
Note that each element in the list represent the number for a single | |
example without batch dimension. K below denotes the actual number of | |
instances for each image. | |
Required fields: | |
- source_id: a list of numpy arrays of int or string of shape | |
[batch_size]. | |
- height: a list of numpy arrays of int of shape [batch_size]. | |
- width: a list of numpy arrays of int of shape [batch_size]. | |
- num_detections: a list of numpy arrays of int of shape [batch_size]. | |
- boxes: a list of numpy arrays of float of shape [batch_size, K, 4], | |
where coordinates are in the original image space (not the | |
normalized coordinates). | |
- classes: a list of numpy arrays of int of shape [batch_size, K]. | |
Optional fields: | |
- is_crowds: a list of numpy arrays of int of shape [batch_size, K]. If | |
th field is absent, it is assumed that this instance is not crowd. | |
- areas: a list of numy arrays of float of shape [batch_size, K]. If the | |
field is absent, the area is calculated using either boxes or | |
masks depending on which one is available. | |
- masks: a list of numpy arrays of string of shape [batch_size, K], | |
label_map: (optional) a dictionary that defines items from the category id | |
to the category name. If `None`, collect the category mappping from the | |
`groundtruths`. | |
Returns: | |
coco_groundtruths: the groundtruth dataset in COCO format. | |
""" | |
source_ids = np.concatenate(groundtruths['source_id'], axis=0) | |
heights = np.concatenate(groundtruths['height'], axis=0) | |
widths = np.concatenate(groundtruths['width'], axis=0) | |
gt_images = [{'id': int(i), 'height': int(h), 'width': int(w)} for i, h, w | |
in zip(source_ids, heights, widths)] | |
gt_annotations = [] | |
num_batches = len(groundtruths['source_id']) | |
batch_size = groundtruths['source_id'][0].shape[0] | |
for i in range(num_batches): | |
for j in range(batch_size): | |
num_instances = groundtruths['num_detections'][i][j] | |
for k in range(num_instances): | |
ann = {} | |
ann['image_id'] = int(groundtruths['source_id'][i][j]) | |
if 'is_crowds' in groundtruths: | |
ann['iscrowd'] = int(groundtruths['is_crowds'][i][j, k]) | |
else: | |
ann['iscrowd'] = 0 | |
ann['category_id'] = int(groundtruths['classes'][i][j, k]) | |
boxes = groundtruths['boxes'][i] | |
ann['bbox'] = [ | |
float(boxes[j, k, 1]), | |
float(boxes[j, k, 0]), | |
float(boxes[j, k, 3] - boxes[j, k, 1]), | |
float(boxes[j, k, 2] - boxes[j, k, 0])] | |
if 'areas' in groundtruths: | |
ann['area'] = float(groundtruths['areas'][i][j, k]) | |
else: | |
ann['area'] = float( | |
(boxes[j, k, 3] - boxes[j, k, 1]) * | |
(boxes[j, k, 2] - boxes[j, k, 0])) | |
if 'masks' in groundtruths: | |
mask = Image.open(six.BytesIO(groundtruths['masks'][i][j, k])) | |
np_mask = np.array(mask, dtype=np.uint8) | |
np_mask[np_mask > 0] = 255 | |
encoded_mask = mask_api.encode(np.asfortranarray(np_mask)) | |
ann['segmentation'] = encoded_mask | |
if 'areas' not in groundtruths: | |
ann['area'] = mask_api.area(encoded_mask) | |
gt_annotations.append(ann) | |
for i, ann in enumerate(gt_annotations): | |
ann['id'] = i + 1 | |
if label_map: | |
gt_categories = [{'id': i, 'name': label_map[i]} for i in label_map] | |
else: | |
category_ids = [gt['category_id'] for gt in gt_annotations] | |
gt_categories = [{'id': i} for i in set(category_ids)] | |
gt_dataset = { | |
'images': gt_images, | |
'categories': gt_categories, | |
'annotations': copy.deepcopy(gt_annotations), | |
} | |
return gt_dataset | |
class COCOGroundtruthGenerator(object): | |
"""Generates the groundtruth annotations from a single example.""" | |
def __init__(self, file_pattern, num_examples, include_mask): | |
self._file_pattern = file_pattern | |
self._num_examples = num_examples | |
self._include_mask = include_mask | |
self._dataset_fn = tf.data.TFRecordDataset | |
def _parse_single_example(self, example): | |
"""Parses a single serialized tf.Example proto. | |
Args: | |
example: a serialized tf.Example proto string. | |
Returns: | |
A dictionary of groundtruth with the following fields: | |
source_id: a scalar tensor of int64 representing the image source_id. | |
height: a scalar tensor of int64 representing the image height. | |
width: a scalar tensor of int64 representing the image width. | |
boxes: a float tensor of shape [K, 4], representing the groundtruth | |
boxes in absolute coordinates with respect to the original image size. | |
classes: a int64 tensor of shape [K], representing the class labels of | |
each instances. | |
is_crowds: a bool tensor of shape [K], indicating whether the instance | |
is crowd. | |
areas: a float tensor of shape [K], indicating the area of each | |
instance. | |
masks: a string tensor of shape [K], containing the bytes of the png | |
mask of each instance. | |
""" | |
decoder = tf_example_decoder.TfExampleDecoder( | |
include_mask=self._include_mask) | |
decoded_tensors = decoder.decode(example) | |
image = decoded_tensors['image'] | |
image_size = tf.shape(image)[0:2] | |
boxes = box_utils.denormalize_boxes( | |
decoded_tensors['groundtruth_boxes'], image_size) | |
groundtruths = { | |
'source_id': tf.string_to_number( | |
decoded_tensors['source_id'], out_type=tf.int64), | |
'height': decoded_tensors['height'], | |
'width': decoded_tensors['width'], | |
'num_detections': tf.shape(decoded_tensors['groundtruth_classes'])[0], | |
'boxes': boxes, | |
'classes': decoded_tensors['groundtruth_classes'], | |
'is_crowds': decoded_tensors['groundtruth_is_crowd'], | |
'areas': decoded_tensors['groundtruth_area'], | |
} | |
if self._include_mask: | |
groundtruths.update({ | |
'masks': decoded_tensors['groundtruth_instance_masks_png'], | |
}) | |
return groundtruths | |
def _build_pipeline(self): | |
"""Builds data pipeline to generate groundtruth annotations.""" | |
dataset = tf.data.Dataset.list_files(self._file_pattern, shuffle=False) | |
dataset = dataset.apply( | |
tf.data.experimental.parallel_interleave( | |
lambda filename: self._dataset_fn(filename).prefetch(1), | |
cycle_length=32, | |
sloppy=False)) | |
dataset = dataset.map(self._parse_single_example, num_parallel_calls=64) | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
dataset = dataset.batch(1, drop_remainder=False) | |
return dataset | |
def __call__(self): | |
with tf.Graph().as_default(): | |
dataset = self._build_pipeline() | |
groundtruth = dataset.make_one_shot_iterator().get_next() | |
with tf.Session() as sess: | |
for _ in range(self._num_examples): | |
groundtruth_result = sess.run(groundtruth) | |
yield groundtruth_result | |
def scan_and_generator_annotation_file(file_pattern, | |
num_samples, | |
include_mask, | |
annotation_file): | |
"""Scans and generate the COCO-style annotation JSON file given a dataset.""" | |
groundtruth_generator = COCOGroundtruthGenerator( | |
file_pattern, num_samples, include_mask) | |
generate_annotation_file(groundtruth_generator, annotation_file) | |
def generate_annotation_file(groundtruth_generator, | |
annotation_file): | |
"""Generates COCO-style annotation JSON file given a groundtruth generator.""" | |
groundtruths = {} | |
logging.info('Loading groundtruth annotations from dataset to memory...') | |
for groundtruth in groundtruth_generator(): | |
for k, v in six.iteritems(groundtruth): | |
if k not in groundtruths: | |
groundtruths[k] = [v] | |
else: | |
groundtruths[k].append(v) | |
gt_dataset = convert_groundtruths_to_coco_dataset(groundtruths) | |
logging.info('Saving groundtruth annotations to the JSON file...') | |
with tf.io.gfile.GFile(annotation_file, 'w') as f: | |
f.write(json.dumps(gt_dataset)) | |
logging.info('Done saving the JSON file...') | |