deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains common building blocks for neural networks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
class ResidualBlock(tf_keras.layers.Layer):
"""A residual block."""
def __init__(self,
filters,
strides,
use_projection=False,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
activation='relu',
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
"""A residual block with BN after convolutions.
Args:
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
kernel_initializer: kernel_initializer for convolutional layers.
kernel_regularizer: tf_keras.regularizers.Regularizer object for Conv2D.
Default to None.
bias_regularizer: tf_keras.regularizers.Regularizer object for Conv2d.
Default to None.
activation: `str` name of the activation function.
use_sync_bn: if True, use synchronized batch normalization.
norm_momentum: `float` normalization omentum for the moving average.
norm_epsilon: `float` small float added to variance to avoid dividing by
zero.
**kwargs: keyword arguments to be passed.
"""
super(ResidualBlock, self).__init__(**kwargs)
self._filters = filters
self._strides = strides
self._use_projection = use_projection
self._use_sync_bn = use_sync_bn
self._activation = activation
self._kernel_initializer = kernel_initializer
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
if use_sync_bn:
self._norm = tf_keras.layers.experimental.SyncBatchNormalization
else:
self._norm = tf_keras.layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation_fn = tf_utils.get_activation(activation)
def build(self, input_shape):
if self._use_projection:
self._shortcut = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=1,
strides=self._strides,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm0 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
self._conv1 = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=3,
strides=self._strides,
padding='same',
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm1 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
self._conv2 = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=3,
strides=1,
padding='same',
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm2 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
super(ResidualBlock, self).build(input_shape)
def get_config(self):
config = {
'filters': self._filters,
'strides': self._strides,
'use_projection': self._use_projection,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
base_config = super(ResidualBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs):
shortcut = inputs
if self._use_projection:
shortcut = self._shortcut(shortcut)
shortcut = self._norm0(shortcut)
x = self._conv1(inputs)
x = self._norm1(x)
x = self._activation_fn(x)
x = self._conv2(x)
x = self._norm2(x)
return self._activation_fn(x + shortcut)
class BottleneckBlock(tf_keras.layers.Layer):
"""A standard bottleneck block."""
def __init__(self,
filters,
strides,
use_projection=False,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
activation='relu',
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
"""A standard bottleneck block with BN after convolutions.
Args:
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
kernel_initializer: kernel_initializer for convolutional layers.
kernel_regularizer: tf_keras.regularizers.Regularizer object for Conv2D.
Default to None.
bias_regularizer: tf_keras.regularizers.Regularizer object for Conv2d.
Default to None.
activation: `str` name of the activation function.
use_sync_bn: if True, use synchronized batch normalization.
norm_momentum: `float` normalization omentum for the moving average.
norm_epsilon: `float` small float added to variance to avoid dividing by
zero.
**kwargs: keyword arguments to be passed.
"""
super(BottleneckBlock, self).__init__(**kwargs)
self._filters = filters
self._strides = strides
self._use_projection = use_projection
self._use_sync_bn = use_sync_bn
self._activation = activation
self._kernel_initializer = kernel_initializer
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
if use_sync_bn:
self._norm = tf_keras.layers.experimental.SyncBatchNormalization
else:
self._norm = tf_keras.layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation_fn = tf_utils.get_activation(activation)
def build(self, input_shape):
if self._use_projection:
self._shortcut = tf_keras.layers.Conv2D(
filters=self._filters * 4,
kernel_size=1,
strides=self._strides,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm0 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
self._conv1 = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=1,
strides=1,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm1 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
self._conv2 = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=3,
strides=self._strides,
padding='same',
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm2 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
self._conv3 = tf_keras.layers.Conv2D(
filters=self._filters * 4,
kernel_size=1,
strides=1,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
self._norm3 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon)
super(BottleneckBlock, self).build(input_shape)
def get_config(self):
config = {
'filters': self._filters,
'strides': self._strides,
'use_projection': self._use_projection,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
base_config = super(BottleneckBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs):
shortcut = inputs
if self._use_projection:
shortcut = self._shortcut(shortcut)
shortcut = self._norm0(shortcut)
x = self._conv1(inputs)
x = self._norm1(x)
x = self._activation_fn(x)
x = self._conv2(x)
x = self._norm2(x)
x = self._activation_fn(x)
x = self._conv3(x)
x = self._norm3(x)
return self._activation_fn(x + shortcut)