Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Base ProgressivePolicy definition for progressive training. | |
To write a progressive model, subclass ProgressivePolicy and implement its | |
abstract methods to handle each training stage. | |
""" | |
import abc | |
import dataclasses | |
from typing import Any, Mapping | |
from absl import logging | |
import six | |
import tensorflow as tf, tf_keras | |
from official.common import streamz_counters | |
from official.modeling.fast_training.progressive import utils | |
from official.modeling.hyperparams import base_config | |
class ProgressiveConfig(base_config.Config): | |
pass | |
class ProgressivePolicy: | |
"""The APIs for handling progressive training stages. | |
Attributes: | |
cur_model: The model for the current progressive training stage. | |
cur_train_dataset: The train dataset function for the current stage. | |
cur_eval_dataset: The eval dataset function for the current stage. | |
cur_optimizer: The optimizer for the current stage. | |
cur_checkpoint_items: Items to be saved in and restored from checkpoints, | |
for the progressive trainer. | |
is_last_stage: Whether it is currently in the last stage. | |
Interfaces: | |
is_stage_advancing: Returns if progressive training is advancing to the | |
next stage. | |
update_pt_stage: Update progressive training stage. | |
""" | |
def __init__(self): | |
"""Initialize stage policy.""" | |
self._cur_train_dataset = None | |
self._cur_eval_dataset = None | |
self._volatiles = utils.VolatileTrackable(optimizer=None, model=None) | |
stage_id = 0 | |
self._stage_id = tf.Variable( | |
stage_id, | |
trainable=False, | |
dtype=tf.int64, | |
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, | |
shape=[]) | |
self._volatiles.reassign_trackable( | |
optimizer=self.get_optimizer(stage_id), | |
model=self.get_model(stage_id, old_model=None)) # pytype: disable=wrong-arg-types # typed-keras | |
streamz_counters.progressive_policy_creation_counter.get_cell( | |
).increase_by(1) | |
def compute_stage_id(self, global_step: int) -> int: | |
for stage_id in range(self.num_stages()): | |
global_step -= self.num_steps(stage_id) | |
if global_step < 0: | |
return stage_id | |
logging.error('Global step %d found no matching progressive stages. ' | |
'Default to the last stage.', global_step) | |
return self.num_stages() - 1 | |
def num_stages(self) -> int: | |
"""Return the total number of progressive stages.""" | |
pass | |
def num_steps(self, stage_id: int) -> int: | |
"""Return the total number of steps in this stage.""" | |
pass | |
def get_model(self, | |
stage_id: int, | |
old_model: tf_keras.Model = None) -> tf_keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras | |
"""Return model for this stage. For initialization, `old_model` = None.""" | |
pass | |
def get_optimizer(self, stage_id: int) -> tf_keras.optimizers.Optimizer: | |
"""Return optimizer for this stage.""" | |
pass | |
def get_train_dataset(self, stage_id: int) -> tf.data.Dataset: | |
"""Return training Dataset for this stage.""" | |
pass | |
def get_eval_dataset(self, stage_id: int) -> tf.data.Dataset: | |
"""Return evaluation Dataset for this stage.""" | |
pass | |
def cur_model(self) -> tf_keras.Model: | |
return self._volatiles.model | |
def cur_train_dataset(self) -> tf.data.Dataset: | |
if self._cur_train_dataset is None: | |
self._cur_train_dataset = self.get_train_dataset(self._stage_id.numpy()) | |
return self._cur_train_dataset | |
def cur_eval_dataset(self) -> tf.data.Dataset: | |
if self._cur_eval_dataset is None: | |
self._cur_eval_dataset = self.get_eval_dataset(self._stage_id.numpy()) | |
return self._cur_eval_dataset | |
def cur_optimizer(self) -> tf_keras.optimizers.Optimizer: | |
return self._volatiles.optimizer | |
def is_last_stage(self) -> bool: | |
stage_id = self._stage_id.numpy() | |
return stage_id >= self.num_stages() - 1 | |
def cur_checkpoint_items(self) -> Mapping[str, Any]: | |
return dict(stage_id=self._stage_id, volatiles=self._volatiles) | |
def is_stage_advancing(self, global_step: int) -> bool: | |
old_stage_id = self._stage_id.numpy() | |
new_stage_id = self.compute_stage_id(global_step) | |
return old_stage_id != new_stage_id | |
def update_pt_stage(self, global_step: int, pass_old_model=True) -> None: | |
"""Update progressive training internal status. | |
Call this after a training loop ends. | |
Args: | |
global_step: an integer scalar of the current global step. | |
pass_old_model: whether to pass the old_model to get_model() function. | |
This is set to False if the old_model is irrelevant (e.g, just a default | |
model from stage 0). | |
""" | |
old_stage_id = self._stage_id.numpy() | |
new_stage_id = self.compute_stage_id(global_step) | |
logging.info('Switching stage from %d to %d', old_stage_id, new_stage_id) | |
# Update stage id. | |
self._stage_id.assign(new_stage_id) | |
# Update dataset function. | |
self._cur_train_dataset = None | |
self._cur_eval_dataset = None | |
# Update optimizer and model. | |
new_optimizer = self.get_optimizer(new_stage_id) | |
self._volatiles.reassign_trackable(optimizer=new_optimizer) | |
new_model = self.get_model( | |
new_stage_id, old_model=self.cur_model if pass_old_model else None) | |
self._volatiles.reassign_trackable(model=new_model) | |