Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for optimization_config.py.""" | |
import tensorflow as tf, tf_keras | |
from official.modeling.optimization.configs import learning_rate_config as lr_cfg | |
from official.modeling.optimization.configs import optimization_config | |
from official.modeling.optimization.configs import optimizer_config as opt_cfg | |
class OptimizerConfigTest(tf.test.TestCase): | |
def test_no_optimizer(self): | |
optimizer = optimization_config.OptimizationConfig({}).optimizer.get() | |
self.assertIsNone(optimizer) | |
def test_no_lr_schedule(self): | |
lr = optimization_config.OptimizationConfig({}).learning_rate.get() | |
self.assertIsNone(lr) | |
def test_no_warmup_schedule(self): | |
warmup = optimization_config.OptimizationConfig({}).warmup.get() | |
self.assertIsNone(warmup) | |
def test_config(self): | |
opt_config = optimization_config.OptimizationConfig({ | |
'optimizer': { | |
'type': 'sgd', | |
'sgd': {} # default config | |
}, | |
'learning_rate': { | |
'type': 'polynomial', | |
'polynomial': {} | |
}, | |
'warmup': { | |
'type': 'linear' | |
} | |
}) | |
self.assertEqual(opt_config.optimizer.get(), opt_cfg.SGDConfig()) | |
self.assertEqual(opt_config.learning_rate.get(), | |
lr_cfg.PolynomialLrConfig()) | |
self.assertEqual(opt_config.warmup.get(), lr_cfg.LinearWarmupConfig()) | |
if __name__ == '__main__': | |
tf.test.main() | |