deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dot product with margin layer."""
# pylint: disable=g-classes-have-attributes
from typing import Tuple
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
@tf_keras.utils.register_keras_serializable(package='Text')
class MatMulWithMargin(tf_keras.layers.Layer):
"""This layer computs a dot product matrix given two encoded inputs.
Args:
logit_scale: The scaling factor of dot products when doing training.
logit_margin: The margin value between the positive and negative examples
when doing training.
"""
def __init__(self,
logit_scale=1.0,
logit_margin=0.0,
**kwargs):
super().__init__(**kwargs)
self.logit_scale = logit_scale
self.logit_margin = logit_margin
def call(self, left_encoded: tf.Tensor,
right_encoded: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
batch_size = tf_utils.get_shape_list(
left_encoded, name='sequence_output_tensor')[0]
# Left -> Right dot product.
left_dot_products = tf.matmul(
left_encoded, right_encoded, transpose_b=True)
self.left_logits = self.logit_scale * (
left_dot_products - self.logit_margin * tf.eye(batch_size))
# Right -> Left dot product.
self.right_logits = tf.transpose(self.left_logits)
return (self.left_logits, self.right_logits)
def get_config(self):
config = {
'logit_scale': self.logit_scale,
'logit_margin': self.logit_margin}
config.update(super().get_config())
return config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)