Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import mobile_bert_layers | |
from official.nlp.modeling.networks import mobile_bert_encoder | |
def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0): | |
"""Generate consistent fake integer input sequences.""" | |
np.random.seed(seed) | |
fake_input = [] | |
for _ in range(batch_size): | |
fake_input.append([]) | |
for _ in range(seq_len): | |
fake_input[-1].append(np.random.randint(0, vocab_size)) | |
fake_input = np.asarray(fake_input) | |
return fake_input | |
class MobileBertEncoderTest(parameterized.TestCase, tf.test.TestCase): | |
def test_embedding_layer_with_token_type(self): | |
layer = mobile_bert_layers.MobileBertEmbedding(10, 8, 2, 16) | |
input_seq = tf.Variable([[2, 3, 4, 5]]) | |
token_type = tf.Variable([[0, 1, 1, 1]]) | |
output = layer(input_seq, token_type) | |
output_shape = output.shape.as_list() | |
expected_shape = [1, 4, 16] | |
self.assertListEqual(output_shape, expected_shape, msg=None) | |
def test_embedding_layer_without_token_type(self): | |
layer = mobile_bert_layers.MobileBertEmbedding(10, 8, 2, 16) | |
input_seq = tf.Variable([[2, 3, 4, 5]]) | |
output = layer(input_seq) | |
output_shape = output.shape.as_list() | |
expected_shape = [1, 4, 16] | |
self.assertListEqual(output_shape, expected_shape, msg=None) | |
def test_embedding_layer_get_config(self): | |
layer = mobile_bert_layers.MobileBertEmbedding( | |
word_vocab_size=16, | |
word_embed_size=32, | |
type_vocab_size=4, | |
output_embed_size=32, | |
max_sequence_length=32, | |
normalization_type='layer_norm', | |
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.01), | |
dropout_rate=0.5) | |
layer_config = layer.get_config() | |
new_layer = mobile_bert_layers.MobileBertEmbedding.from_config(layer_config) | |
self.assertEqual(layer_config, new_layer.get_config()) | |
def test_no_norm(self): | |
layer = mobile_bert_layers.NoNorm() | |
feature = tf.random.normal([2, 3, 4]) | |
output = layer(feature) | |
output_shape = output.shape.as_list() | |
expected_shape = [2, 3, 4] | |
self.assertListEqual(output_shape, expected_shape, msg=None) | |
def test_transfomer_kq_shared_bottleneck(self, is_kq_shared): | |
feature = tf.random.uniform([2, 3, 512]) | |
layer = mobile_bert_layers.MobileBertTransformer( | |
key_query_shared_bottleneck=is_kq_shared) | |
output = layer(feature) | |
output_shape = output.shape.as_list() | |
expected_shape = [2, 3, 512] | |
self.assertListEqual(output_shape, expected_shape, msg=None) | |
def test_transfomer_with_mask(self): | |
feature = tf.random.uniform([2, 3, 512]) | |
input_mask = [[[0., 0., 1.], [0., 0., 1.], [0., 0., 1.]], | |
[[0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]] | |
input_mask = np.asarray(input_mask) | |
layer = mobile_bert_layers.MobileBertTransformer() | |
output = layer(feature, input_mask) | |
output_shape = output.shape.as_list() | |
expected_shape = [2, 3, 512] | |
self.assertListEqual(output_shape, expected_shape, msg=None) | |
def test_transfomer_return_attention_score(self): | |
sequence_length = 5 | |
num_attention_heads = 8 | |
feature = tf.random.uniform([2, sequence_length, 512]) | |
layer = mobile_bert_layers.MobileBertTransformer( | |
num_attention_heads=num_attention_heads) | |
_, attention_score = layer(feature, return_attention_scores=True) | |
expected_shape = [2, num_attention_heads, sequence_length, sequence_length] | |
self.assertListEqual( | |
attention_score.shape.as_list(), expected_shape, msg=None) | |
def test_transformer_get_config(self): | |
layer = mobile_bert_layers.MobileBertTransformer( | |
hidden_size=32, | |
num_attention_heads=2, | |
intermediate_size=48, | |
intermediate_act_fn='gelu', | |
hidden_dropout_prob=0.5, | |
attention_probs_dropout_prob=0.4, | |
intra_bottleneck_size=64, | |
use_bottleneck_attention=True, | |
key_query_shared_bottleneck=False, | |
num_feedforward_networks=2, | |
normalization_type='layer_norm', | |
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.01), | |
name='block') | |
layer_config = layer.get_config() | |
new_layer = mobile_bert_layers.MobileBertTransformer.from_config( | |
layer_config) | |
self.assertEqual(layer_config, new_layer.get_config()) | |
class MobileBertMaskedLMTest(tf.test.TestCase): | |
def create_layer(self, | |
vocab_size, | |
hidden_size, | |
embedding_width, | |
output='predictions', | |
xformer_stack=None): | |
# First, create a transformer stack that we can use to get the LM's | |
# vocabulary weight. | |
if xformer_stack is None: | |
xformer_stack = mobile_bert_encoder.MobileBERTEncoder( | |
word_vocab_size=vocab_size, | |
num_blocks=1, | |
hidden_size=hidden_size, | |
num_attention_heads=4, | |
word_embed_size=embedding_width) | |
# Create a maskedLM from the transformer stack. | |
test_layer = mobile_bert_layers.MobileBertMaskedLM( | |
embedding_table=xformer_stack.get_embedding_table(), output=output) | |
return test_layer | |
def test_layer_creation(self): | |
vocab_size = 100 | |
sequence_length = 32 | |
hidden_size = 64 | |
embedding_width = 32 | |
num_predictions = 21 | |
test_layer = self.create_layer( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
embedding_width=embedding_width) | |
# Make sure that the output tensor of the masked LM is the right shape. | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) | |
output = test_layer(lm_input_tensor, masked_positions=masked_positions) | |
expected_output_shape = [None, num_predictions, vocab_size] | |
self.assertEqual(expected_output_shape, output.shape.as_list()) | |
def test_layer_invocation_with_external_logits(self): | |
vocab_size = 100 | |
sequence_length = 32 | |
hidden_size = 64 | |
embedding_width = 32 | |
num_predictions = 21 | |
xformer_stack = mobile_bert_encoder.MobileBERTEncoder( | |
word_vocab_size=vocab_size, | |
num_blocks=1, | |
hidden_size=hidden_size, | |
num_attention_heads=4, | |
word_embed_size=embedding_width) | |
test_layer = self.create_layer( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
embedding_width=embedding_width, | |
xformer_stack=xformer_stack, | |
output='predictions') | |
logit_layer = self.create_layer( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
embedding_width=embedding_width, | |
xformer_stack=xformer_stack, | |
output='logits') | |
# Create a model from the masked LM layer. | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) | |
output = test_layer(lm_input_tensor, masked_positions) | |
logit_output = logit_layer(lm_input_tensor, masked_positions) | |
logit_output = tf_keras.layers.Activation(tf.nn.log_softmax)(logit_output) | |
logit_layer.set_weights(test_layer.get_weights()) | |
model = tf_keras.Model([lm_input_tensor, masked_positions], output) | |
logits_model = tf_keras.Model(([lm_input_tensor, masked_positions]), | |
logit_output) | |
# Invoke the masked LM on some fake data to make sure there are no runtime | |
# errors in the code. | |
batch_size = 3 | |
lm_input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, hidden_size)) | |
masked_position_data = np.random.randint( | |
sequence_length, size=(batch_size, num_predictions)) | |
# ref_outputs = model.predict([lm_input_data, masked_position_data]) | |
# outputs = logits_model.predict([lm_input_data, masked_position_data]) | |
ref_outputs = model([lm_input_data, masked_position_data]) | |
outputs = logits_model([lm_input_data, masked_position_data]) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, num_predictions, vocab_size) | |
self.assertEqual(expected_output_shape, ref_outputs.shape) | |
self.assertEqual(expected_output_shape, outputs.shape) | |
self.assertAllClose(ref_outputs, outputs) | |
def test_layer_invocation(self): | |
vocab_size = 100 | |
sequence_length = 32 | |
hidden_size = 64 | |
embedding_width = 32 | |
num_predictions = 21 | |
test_layer = self.create_layer( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
embedding_width=embedding_width) | |
# Create a model from the masked LM layer. | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) | |
output = test_layer(lm_input_tensor, masked_positions) | |
model = tf_keras.Model([lm_input_tensor, masked_positions], output) | |
# Invoke the masked LM on some fake data to make sure there are no runtime | |
# errors in the code. | |
batch_size = 3 | |
lm_input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, hidden_size)) | |
masked_position_data = np.random.randint( | |
2, size=(batch_size, num_predictions)) | |
_ = model.predict([lm_input_data, masked_position_data]) | |
def test_unknown_output_type_fails(self): | |
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'): | |
_ = self.create_layer( | |
vocab_size=8, hidden_size=8, embedding_width=4, output='bad') | |
def test_hidden_size_smaller_than_embedding_width(self): | |
hidden_size = 8 | |
sequence_length = 32 | |
num_predictions = 20 | |
with self.assertRaisesRegex( | |
ValueError, 'hidden size 8 cannot be smaller than embedding width 16.'): | |
test_layer = self.create_layer( | |
vocab_size=8, hidden_size=8, embedding_width=16) | |
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) | |
masked_positions = tf_keras.Input( | |
shape=(num_predictions,), dtype=tf.int32) | |
_ = test_layer(lm_input_tensor, masked_positions) | |
if __name__ == '__main__': | |
tf.test.main() | |