deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classification and regression network."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras
from tensorflow.python.util import deprecation
@tf_keras.utils.register_keras_serializable(package='Text')
class Classification(tf_keras.Model):
"""Classification network head for BERT modeling.
This network implements a simple classifier head based on a dense layer. If
num_classes is one, it can be considered as a regression problem.
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Args:
input_width: The innermost dimension of the input tensor to this network.
num_classes: The number of classes that this network should classify to. If
equal to 1, a regression problem is assumed.
activation: The activation, if any, for the dense layer in this network.
initializer: The initializer for the dense layer in this network. Defaults
to a Glorot uniform initializer.
output: The output style for this network. Can be either `logits` or
`predictions`.
"""
@deprecation.deprecated(None, 'Classification as a network is deprecated. '
'Please use the layers.ClassificationHead instead.')
def __init__(self,
input_width,
num_classes,
initializer='glorot_uniform',
output='logits',
**kwargs):
cls_output = tf_keras.layers.Input(
shape=(input_width,), name='cls_output', dtype=tf.float32)
logits = tf_keras.layers.Dense(
num_classes,
activation=None,
kernel_initializer=initializer,
name='predictions/transform/logits')(
cls_output)
if output == 'logits':
output_tensors = logits
elif output == 'predictions':
policy = tf_keras.mixed_precision.global_policy()
if policy.name == 'mixed_bfloat16':
# b/158514794: bf16 is not stable with post-softmax cross-entropy.
policy = tf.float32
output_tensors = tf_keras.layers.Activation(
tf.nn.log_softmax, dtype=policy)(
logits)
else:
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
super().__init__(
inputs=[cls_output], outputs=output_tensors, **kwargs)
# b/164516224
# Once we've created the network using the Functional API, we call
# super().__init__ as though we were invoking the Functional API Model
# constructor, resulting in this object having all the properties of a model
# created using the Functional API. Once super().__init__ is called, we
# can assign attributes to `self` - note that all `self` assignments are
# below this line.
config_dict = {
'input_width': input_width,
'num_classes': num_classes,
'initializer': initializer,
'output': output,
}
# We are storing the config dict as a namedtuple here to ensure checkpoint
# compatibility with an earlier version of this model which did not track
# the config dict attribute. TF does not track immutable attrs which
# do not contain Trackables, so by creating a config namedtuple instead of
# a dict we avoid tracking it.
config_cls = collections.namedtuple('Config', config_dict.keys())
self._config = config_cls(**config_dict)
self.logits = logits
def get_config(self):
return dict(self._config._asdict())
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)