Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Classification and regression network.""" | |
# pylint: disable=g-classes-have-attributes | |
import collections | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.util import deprecation | |
class Classification(tf_keras.Model): | |
"""Classification network head for BERT modeling. | |
This network implements a simple classifier head based on a dense layer. If | |
num_classes is one, it can be considered as a regression problem. | |
*Note* that the network is constructed by | |
[Keras Functional API](https://keras.io/guides/functional_api/). | |
Args: | |
input_width: The innermost dimension of the input tensor to this network. | |
num_classes: The number of classes that this network should classify to. If | |
equal to 1, a regression problem is assumed. | |
activation: The activation, if any, for the dense layer in this network. | |
initializer: The initializer for the dense layer in this network. Defaults | |
to a Glorot uniform initializer. | |
output: The output style for this network. Can be either `logits` or | |
`predictions`. | |
""" | |
def __init__(self, | |
input_width, | |
num_classes, | |
initializer='glorot_uniform', | |
output='logits', | |
**kwargs): | |
cls_output = tf_keras.layers.Input( | |
shape=(input_width,), name='cls_output', dtype=tf.float32) | |
logits = tf_keras.layers.Dense( | |
num_classes, | |
activation=None, | |
kernel_initializer=initializer, | |
name='predictions/transform/logits')( | |
cls_output) | |
if output == 'logits': | |
output_tensors = logits | |
elif output == 'predictions': | |
policy = tf_keras.mixed_precision.global_policy() | |
if policy.name == 'mixed_bfloat16': | |
# b/158514794: bf16 is not stable with post-softmax cross-entropy. | |
policy = tf.float32 | |
output_tensors = tf_keras.layers.Activation( | |
tf.nn.log_softmax, dtype=policy)( | |
logits) | |
else: | |
raise ValueError( | |
('Unknown `output` value "%s". `output` can be either "logits" or ' | |
'"predictions"') % output) | |
super().__init__( | |
inputs=[cls_output], outputs=output_tensors, **kwargs) | |
# b/164516224 | |
# Once we've created the network using the Functional API, we call | |
# super().__init__ as though we were invoking the Functional API Model | |
# constructor, resulting in this object having all the properties of a model | |
# created using the Functional API. Once super().__init__ is called, we | |
# can assign attributes to `self` - note that all `self` assignments are | |
# below this line. | |
config_dict = { | |
'input_width': input_width, | |
'num_classes': num_classes, | |
'initializer': initializer, | |
'output': output, | |
} | |
# We are storing the config dict as a namedtuple here to ensure checkpoint | |
# compatibility with an earlier version of this model which did not track | |
# the config dict attribute. TF does not track immutable attrs which | |
# do not contain Trackables, so by creating a config namedtuple instead of | |
# a dict we avoid tracking it. | |
config_cls = collections.namedtuple('Config', config_dict.keys()) | |
self._config = config_cls(**config_dict) | |
self.logits = logits | |
def get_config(self): | |
return dict(self._config._asdict()) | |
def from_config(cls, config, custom_objects=None): | |
return cls(**config) | |