Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for convert_3d_2plus1d.""" | |
import os | |
from absl import flags | |
import tensorflow as tf, tf_keras | |
from official.projects.movinet.modeling import movinet | |
from official.projects.movinet.modeling import movinet_model | |
from official.projects.movinet.tools import convert_3d_2plus1d | |
FLAGS = flags.FLAGS | |
class Convert3d2plus1dTest(tf.test.TestCase): | |
def test_convert_model(self): | |
saved_model_path = self.get_temp_dir() | |
input_checkpoint_path = os.path.join(saved_model_path, 'ckpt-input') | |
output_checkpoint_path = os.path.join(saved_model_path, 'ckpt') | |
model_3d_2plus1d = movinet_model.MovinetClassifier( | |
backbone=movinet.Movinet( | |
model_id='a0', | |
conv_type='3d_2plus1d', | |
se_type='2plus3d'), | |
num_classes=600) | |
model_3d_2plus1d.build([1, 1, 1, 1, 3]) | |
save_checkpoint = tf.train.Checkpoint(model=model_3d_2plus1d) | |
save_checkpoint.save(input_checkpoint_path) | |
FLAGS.input_checkpoint_path = f'{input_checkpoint_path}-1' | |
FLAGS.output_checkpoint_path = output_checkpoint_path | |
FLAGS.model_id = 'a0' | |
FLAGS.use_positional_encoding = False | |
FLAGS.num_classes = 600 | |
FLAGS.verify_output = True | |
convert_3d_2plus1d.main('unused_args') | |
print(os.listdir(saved_model_path)) | |
self.assertTrue(tf.io.gfile.exists(f'{output_checkpoint_path}-1.index')) | |
if __name__ == '__main__': | |
tf.test.main() | |