Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for MobileNet.""" | |
import itertools | |
import math | |
# Import libraries | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling.backbones import mobilenet | |
class MobileNetTest(parameterized.TestCase, tf.test.TestCase): | |
def test_serialize_deserialize(self, model_id): | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
model_id=model_id, | |
filter_size_scale=1.0, | |
stochastic_depth_drop_rate=None, | |
use_sync_bn=False, | |
kernel_initializer='VarianceScaling', | |
kernel_regularizer=None, | |
bias_regularizer=None, | |
norm_momentum=0.99, | |
norm_epsilon=0.001, | |
output_stride=None, | |
min_depth=8, | |
divisible_by=8, | |
regularize_depthwise=False, | |
finegrain_classification_mode=True | |
) | |
network = mobilenet.MobileNet(**kwargs) | |
expected_config = dict(kwargs) | |
self.assertEqual(network.get_config(), expected_config) | |
# Create another network object from the first object's config. | |
new_network = mobilenet.MobileNet.from_config(network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
def test_input_specs(self, input_dim, model_id): | |
"""Test different input feature dimensions.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) | |
network = mobilenet.MobileNet(model_id=model_id, input_specs=input_specs) | |
inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) | |
_ = network(inputs) | |
def test_mobilenet_creation(self, model_id, | |
input_size): | |
"""Test creation of MobileNet family models.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
mobilenet_layers = { | |
# The number of filters of layers having outputs been collected | |
# for filter_size_scale = 1.0 | |
'MobileNetV1': [128, 256, 512, 1024], | |
'MobileNetV2': [24, 32, 96, 320], | |
'MobileNetV3Small': [16, 24, 48, 96], | |
'MobileNetV3Large': [24, 40, 112, 160], | |
'MobileNetV3EdgeTPU': [32, 48, 96, 192], | |
'MobileNetMultiMAX': [32, 64, 128, 160], | |
'MobileNetMultiAVG': [32, 64, 160, 192], | |
'MobileNetMultiAVGSeg': [32, 64, 160, 96], | |
'MobileNetMultiMAXSeg': [32, 64, 128, 96], | |
'MobileNetV3SmallReducedFilters': [16, 24, 48, 48], | |
} | |
network = mobilenet.MobileNet(model_id=model_id, | |
filter_size_scale=1.0) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
for idx, num_filter in enumerate(mobilenet_layers[model_id]): | |
self.assertAllEqual( | |
[1, input_size / 2 ** (idx+2), input_size / 2 ** (idx+2), num_filter], | |
endpoints[str(idx+2)].shape.as_list()) | |
def test_mobilenet_intermediate_layers(self, model_id, input_size): | |
tf_keras.backend.set_image_data_format('channels_last') | |
# Tests the mobilenet intermediate depthwise layers. | |
mobilenet_depthwise_layers = { | |
# The number of filters of depthwise layers having outputs been | |
# collected for filter_size_scale = 1.0. Only tests the mobilenet | |
# model with inverted bottleneck block using depthwise which excludes | |
# MobileNetV1. | |
'MobileNetV1': [], | |
'MobileNetV2': [144, 192, 576, 960], | |
'MobileNetV3Small': [16, 88, 144, 576], | |
'MobileNetV3Large': [72, 120, 672, 960], | |
'MobileNetV3EdgeTPU': [None, None, 384, 1280], | |
'MobileNetMultiMAX': [96, 128, 384, 640], | |
'MobileNetMultiAVG': [64, 192, 640, 768], | |
'MobileNetMultiAVGSeg': [64, 192, 640, 384], | |
'MobileNetMultiMAXSeg': [96, 128, 384, 320], | |
'MobileNetV3SmallReducedFilters': [16, 88, 144, 288], | |
} | |
network = mobilenet.MobileNet(model_id=model_id, | |
filter_size_scale=1.0, | |
output_intermediate_endpoints=True) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
for idx, num_filter in enumerate(mobilenet_depthwise_layers[model_id]): | |
# Not using depthwise conv in this layer. | |
if num_filter is None: | |
continue | |
self.assertAllEqual( | |
[1, input_size / 2**(idx + 2), input_size / 2**(idx + 2), num_filter], | |
endpoints[str(idx + 2) + '/depthwise'].shape.as_list()) | |
def test_mobilenet_scaling(self, model_id, | |
filter_size_scale): | |
"""Test for creation of a MobileNet classifier.""" | |
mobilenet_params = { | |
('MobileNetV1', 1.0): 3228864, | |
('MobileNetV1', 0.75): 1832976, | |
('MobileNetV2', 1.0): 2257984, | |
('MobileNetV2', 0.75): 1382064, | |
('MobileNetV3Large', 1.0): 4226432, | |
('MobileNetV3Large', 0.75): 2731616, | |
('MobileNetV3Small', 1.0): 1529968, | |
('MobileNetV3Small', 0.75): 1026552, | |
('MobileNetV3EdgeTPU', 1.0): 2849312, | |
('MobileNetV3EdgeTPU', 0.75): 1737288, | |
('MobileNetMultiAVG', 1.0): 3704416, | |
('MobileNetMultiAVG', 0.75): 2349704, | |
('MobileNetMultiMAX', 1.0): 3174560, | |
('MobileNetMultiMAX', 0.75): 2045816, | |
('MobileNetMultiAVGSeg', 1.0): 2239840, | |
('MobileNetMultiAVGSeg', 0.75): 1395272, | |
('MobileNetMultiMAXSeg', 1.0): 1929088, | |
('MobileNetMultiMAXSeg', 0.75): 1216544, | |
('MobileNetV3SmallReducedFilters', 1.0): 694880, | |
('MobileNetV3SmallReducedFilters', 0.75): 505960, | |
} | |
input_size = 224 | |
network = mobilenet.MobileNet(model_id=model_id, | |
filter_size_scale=filter_size_scale) | |
self.assertEqual(network.count_params(), | |
mobilenet_params[(model_id, filter_size_scale)]) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
_ = network(inputs) | |
def test_mobilenet_output_stride(self, model_id, output_stride): | |
"""Test for creation of a MobileNet with different output strides.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
mobilenet_layers = { | |
# The number of filters of the layers outputs been collected | |
# for filter_size_scale = 1.0. | |
'MobileNetV1': 1024, | |
'MobileNetV2': 320, | |
'MobileNetV3Small': 96, | |
'MobileNetV3Large': 160, | |
'MobileNetV3EdgeTPU': 192, | |
'MobileNetMultiMAX': 160, | |
'MobileNetMultiAVG': 192, | |
'MobileNetMultiAVGSeg': 448, | |
'MobileNetMultiMAXSeg': 448, | |
'MobileNetV3SmallReducedFilters': 48, | |
} | |
network = mobilenet.MobileNet( | |
model_id=model_id, filter_size_scale=1.0, output_stride=output_stride) | |
level = int(math.log2(output_stride)) | |
input_size = 224 | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
num_filter = mobilenet_layers[model_id] | |
self.assertAllEqual( | |
[1, input_size / output_stride, input_size / output_stride, num_filter], | |
endpoints[str(level)].shape.as_list()) | |
if __name__ == '__main__': | |
tf.test.main() | |