deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for MobileNet."""
import itertools
import math
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.modeling.backbones import mobilenet
class MobileNetTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
'MobileNetMultiAVGSeg',
'MobileNetMultiMAXSeg',
'MobileNetV3SmallReducedFilters',
)
def test_serialize_deserialize(self, model_id):
# Create a network object that sets all of its config options.
kwargs = dict(
model_id=model_id,
filter_size_scale=1.0,
stochastic_depth_drop_rate=None,
use_sync_bn=False,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
norm_momentum=0.99,
norm_epsilon=0.001,
output_stride=None,
min_depth=8,
divisible_by=8,
regularize_depthwise=False,
finegrain_classification_mode=True
)
network = mobilenet.MobileNet(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = mobilenet.MobileNet.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
@parameterized.parameters(
itertools.product(
[1, 3],
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
'MobileNetMultiAVGSeg',
'MobileNetMultiMAXSeg',
'MobileNetV3SmallReducedFilters',
],
))
def test_input_specs(self, input_dim, model_id):
"""Test different input feature dimensions."""
tf_keras.backend.set_image_data_format('channels_last')
input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim])
network = mobilenet.MobileNet(model_id=model_id, input_specs=input_specs)
inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1)
_ = network(inputs)
@parameterized.parameters(
itertools.product(
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
'MobileNetMultiAVGSeg',
'MobileNetV3SmallReducedFilters',
],
[32, 224],
))
def test_mobilenet_creation(self, model_id,
input_size):
"""Test creation of MobileNet family models."""
tf_keras.backend.set_image_data_format('channels_last')
mobilenet_layers = {
# The number of filters of layers having outputs been collected
# for filter_size_scale = 1.0
'MobileNetV1': [128, 256, 512, 1024],
'MobileNetV2': [24, 32, 96, 320],
'MobileNetV3Small': [16, 24, 48, 96],
'MobileNetV3Large': [24, 40, 112, 160],
'MobileNetV3EdgeTPU': [32, 48, 96, 192],
'MobileNetMultiMAX': [32, 64, 128, 160],
'MobileNetMultiAVG': [32, 64, 160, 192],
'MobileNetMultiAVGSeg': [32, 64, 160, 96],
'MobileNetMultiMAXSeg': [32, 64, 128, 96],
'MobileNetV3SmallReducedFilters': [16, 24, 48, 48],
}
network = mobilenet.MobileNet(model_id=model_id,
filter_size_scale=1.0)
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
for idx, num_filter in enumerate(mobilenet_layers[model_id]):
self.assertAllEqual(
[1, input_size / 2 ** (idx+2), input_size / 2 ** (idx+2), num_filter],
endpoints[str(idx+2)].shape.as_list())
@parameterized.parameters(
itertools.product(
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
'MobileNetMultiAVGSeg',
'MobileNetMultiMAXSeg',
'MobileNetV3SmallReducedFilters',
],
[32, 224],
))
def test_mobilenet_intermediate_layers(self, model_id, input_size):
tf_keras.backend.set_image_data_format('channels_last')
# Tests the mobilenet intermediate depthwise layers.
mobilenet_depthwise_layers = {
# The number of filters of depthwise layers having outputs been
# collected for filter_size_scale = 1.0. Only tests the mobilenet
# model with inverted bottleneck block using depthwise which excludes
# MobileNetV1.
'MobileNetV1': [],
'MobileNetV2': [144, 192, 576, 960],
'MobileNetV3Small': [16, 88, 144, 576],
'MobileNetV3Large': [72, 120, 672, 960],
'MobileNetV3EdgeTPU': [None, None, 384, 1280],
'MobileNetMultiMAX': [96, 128, 384, 640],
'MobileNetMultiAVG': [64, 192, 640, 768],
'MobileNetMultiAVGSeg': [64, 192, 640, 384],
'MobileNetMultiMAXSeg': [96, 128, 384, 320],
'MobileNetV3SmallReducedFilters': [16, 88, 144, 288],
}
network = mobilenet.MobileNet(model_id=model_id,
filter_size_scale=1.0,
output_intermediate_endpoints=True)
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
for idx, num_filter in enumerate(mobilenet_depthwise_layers[model_id]):
# Not using depthwise conv in this layer.
if num_filter is None:
continue
self.assertAllEqual(
[1, input_size / 2**(idx + 2), input_size / 2**(idx + 2), num_filter],
endpoints[str(idx + 2) + '/depthwise'].shape.as_list())
@parameterized.parameters(
itertools.product(
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
'MobileNetMultiMAX',
'MobileNetMultiAVGSeg',
'MobileNetMultiMAXSeg',
'MobileNetV3SmallReducedFilters',
],
[1.0, 0.75],
))
def test_mobilenet_scaling(self, model_id,
filter_size_scale):
"""Test for creation of a MobileNet classifier."""
mobilenet_params = {
('MobileNetV1', 1.0): 3228864,
('MobileNetV1', 0.75): 1832976,
('MobileNetV2', 1.0): 2257984,
('MobileNetV2', 0.75): 1382064,
('MobileNetV3Large', 1.0): 4226432,
('MobileNetV3Large', 0.75): 2731616,
('MobileNetV3Small', 1.0): 1529968,
('MobileNetV3Small', 0.75): 1026552,
('MobileNetV3EdgeTPU', 1.0): 2849312,
('MobileNetV3EdgeTPU', 0.75): 1737288,
('MobileNetMultiAVG', 1.0): 3704416,
('MobileNetMultiAVG', 0.75): 2349704,
('MobileNetMultiMAX', 1.0): 3174560,
('MobileNetMultiMAX', 0.75): 2045816,
('MobileNetMultiAVGSeg', 1.0): 2239840,
('MobileNetMultiAVGSeg', 0.75): 1395272,
('MobileNetMultiMAXSeg', 1.0): 1929088,
('MobileNetMultiMAXSeg', 0.75): 1216544,
('MobileNetV3SmallReducedFilters', 1.0): 694880,
('MobileNetV3SmallReducedFilters', 0.75): 505960,
}
input_size = 224
network = mobilenet.MobileNet(model_id=model_id,
filter_size_scale=filter_size_scale)
self.assertEqual(network.count_params(),
mobilenet_params[(model_id, filter_size_scale)])
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
_ = network(inputs)
@parameterized.parameters(
itertools.product(
[
'MobileNetV1',
'MobileNetV2',
'MobileNetV3Large',
'MobileNetV3Small',
'MobileNetV3EdgeTPU',
'MobileNetMultiAVG',
'MobileNetMultiMAX',
'MobileNetMultiAVGSeg',
'MobileNetMultiMAXSeg',
'MobileNetV3SmallReducedFilters',
],
[8, 16, 32],
))
def test_mobilenet_output_stride(self, model_id, output_stride):
"""Test for creation of a MobileNet with different output strides."""
tf_keras.backend.set_image_data_format('channels_last')
mobilenet_layers = {
# The number of filters of the layers outputs been collected
# for filter_size_scale = 1.0.
'MobileNetV1': 1024,
'MobileNetV2': 320,
'MobileNetV3Small': 96,
'MobileNetV3Large': 160,
'MobileNetV3EdgeTPU': 192,
'MobileNetMultiMAX': 160,
'MobileNetMultiAVG': 192,
'MobileNetMultiAVGSeg': 448,
'MobileNetMultiMAXSeg': 448,
'MobileNetV3SmallReducedFilters': 48,
}
network = mobilenet.MobileNet(
model_id=model_id, filter_size_scale=1.0, output_stride=output_stride)
level = int(math.log2(output_stride))
input_size = 224
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
num_filter = mobilenet_layers[model_id]
self.assertAllEqual(
[1, input_size / output_stride, input_size / output_stride, num_filter],
endpoints[str(level)].shape.as_list())
if __name__ == '__main__':
tf.test.main()