# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The COCO-style evaluator. The following snippet demonstrates the use of interfaces: evaluator = COCOEvaluator(...) for _ in range(num_evals): for _ in range(num_batches_per_eval): predictions, groundtruth = predictor.predict(...) # pop a batch. evaluator.update(predictions, groundtruths) # aggregate internal stats. evaluator.evaluate() # finish one full eval. See also: https://github.com/cocodataset/cocoapi/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import copy import tempfile from absl import logging import numpy as np from pycocotools import cocoeval import six import tensorflow as tf, tf_keras from official.legacy.detection.evaluation import coco_utils from official.legacy.detection.utils import class_utils class OlnCOCOevalWrapper(cocoeval.COCOeval): """COCOeval wrapper class. Rewritten based on cocoapi: (pycocotools/cocoeval.py) This class wraps COCOEVAL API object, which provides the following additional functionalities: 1. summarze 'all', 'seen', and 'novel' split output print-out, e.g., AR at different K proposals, AR and AP resutls for 'seen' and 'novel' class splits. """ def __init__(self, coco_gt, coco_dt, iou_type='box'): super(OlnCOCOevalWrapper, self).__init__( cocoGt=coco_gt, cocoDt=coco_dt, iouType=iou_type) def summarize(self): """Compute and display summary metrics for evaluation results. Delta to the standard cocoapi function: More Averate Recall metrics are produced with different top-K proposals. Note this functin can *only* be applied on the default parameter setting. Raises: Exception: Please run accumulate() first. """ def _summarize(ap=1, iou_thr=None, area_rng='all', max_dets=100): p = self.params i_str = (' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = ' '{:0.3f}') title_str = 'Average Precision' if ap == 1 else 'Average Recall' type_str = '(AP)' if ap == 1 else '(AR)' iou_str = '{:0.2f}:{:0.2f}'.format( p.iouThrs[0], p.iouThrs[-1]) if iou_thr is None else '{:0.2f}'.format(iou_thr) aind = [i for i, a_rng in enumerate(p.areaRngLbl) if a_rng == area_rng] mind = [i for i, m_det in enumerate(p.maxDets) if m_det == max_dets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iou_thr is not None: t = np.where(iou_thr == p.iouThrs)[0] s = s[t] s = s[:, :, :, aind, mind] else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iou_thr is not None: t = np.where(iou_thr == p.iouThrs)[0] s = s[t] s = s[:, :, aind, mind] if not (s[s > -1]).any(): mean_s = -1 else: mean_s = np.mean(s[s > -1]) print( i_str.format(title_str, type_str, iou_str, area_rng, max_dets, mean_s)) return mean_s def _summarize_dets(): stats = np.zeros((14,)) stats[0] = _summarize(1) stats[1] = _summarize( 1, iou_thr=.5, ) stats[2] = _summarize( 1, iou_thr=.75, ) stats[3] = _summarize( 1, area_rng='small', ) stats[4] = _summarize( 1, area_rng='medium', ) stats[5] = _summarize( 1, area_rng='large', ) stats[6] = _summarize(0, max_dets=self.params.maxDets[0]) # 10 stats[7] = _summarize(0, max_dets=self.params.maxDets[1]) # 20 stats[8] = _summarize(0, max_dets=self.params.maxDets[2]) # 50 stats[9] = _summarize(0, max_dets=self.params.maxDets[3]) # 100 stats[10] = _summarize(0, max_dets=self.params.maxDets[4]) # 200 stats[11] = _summarize(0, area_rng='small', max_dets=10) stats[12] = _summarize(0, area_rng='medium', max_dets=10) stats[13] = _summarize(0, area_rng='large', max_dets=10) return stats if not self.eval: raise Exception('Please run accumulate() first') summarize = _summarize_dets self.stats = summarize() class OlnCOCOevalXclassWrapper(OlnCOCOevalWrapper): """COCOeval wrapper class. Rewritten based on cocoapi: (pycocotools/cocoeval.py) Delta to the standard cocoapi: Detections that hit the 'seen' class objects are ignored in top-K proposals. This class wraps COCOEVAL API object, which provides the following additional functionalities: 1. Include ignore-class split (e.g., 'voc' or 'nonvoc'). 2. Do not count (or ignore) box proposals hitting ignore-class when evaluating Average Recall at top-K proposals. """ def __init__(self, coco_gt, coco_dt, iou_type='box'): super(OlnCOCOevalXclassWrapper, self).__init__( coco_gt=coco_gt, coco_dt=coco_dt, iou_type=iou_type) def evaluateImg(self, img_id, cat_id, a_rng, max_det): p = self.params if p.useCats: gt = self._gts[img_id, cat_id] dt = self._dts[img_id, cat_id] else: gt, dt = [], [] for c_id in p.catIds: gt.extend(self._gts[img_id, c_id]) dt.extend(self._dts[img_id, c_id]) if not gt and not dt: return None for g in gt: if g['ignore'] or (g['area'] < a_rng[0] or g['area'] > a_rng[1]): g['_ignore'] = 1 else: g['_ignore'] = 0 # Class manipulation: ignore the 'ignored_split'. if 'ignored_split' in g and g['ignored_split'] == 1: g['_ignore'] = 1 # sort dt highest score first, sort gt ignore last gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort') gt = [gt[i] for i in gtind] dtind = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in dtind[0:max_det]] iscrowd = [int(o['iscrowd']) for o in gt] # load computed ious # ious = self.ious[img_id, cat_id][:, gtind] if len( # self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id] if self.ious[img_id, cat_id].any(): ious = self.ious[img_id, cat_id][:, gtind] else: ious = self.ious[img_id, cat_id] tt = len(p.iouThrs) gg = len(gt) dd = len(dt) gtm = np.zeros((tt, gg)) dtm = np.zeros((tt, dd)) gt_ig = np.array([g['_ignore'] for g in gt]) dt_ig = np.zeros((tt, dd)) # indicator of whether the gt object class is of ignored_split or not. gt_ig_split = np.array([g['ignored_split'] for g in gt]) dt_ig_split = np.zeros((dd)) if ious.any(): for tind, t in enumerate(p.iouThrs): for dind, d in enumerate(dt): # information about best match so far (m=-1 -> unmatched) iou = min([t, 1 - 1e-10]) m = -1 for gind, g in enumerate(gt): # if this gt already matched, and not a crowd, continue if gtm[tind, gind] > 0 and not iscrowd[gind]: continue # if dt matched to reg gt, and on ignore gt, stop if m > -1 and gt_ig[m] == 0 and gt_ig[gind] == 1: break # continue to next gt unless better match made if ious[dind, gind] < iou: continue # if match successful and best so far, store appropriately iou = ious[dind, gind] m = gind # if match made store id of match for both dt and gt if m == -1: continue dt_ig[tind, dind] = gt_ig[m] dtm[tind, dind] = gt[m]['id'] gtm[tind, m] = d['id'] # Activate to ignore the seen-class detections. if tind == 0: # Register just only once: tind > 0 is also fine. dt_ig_split[dind] = gt_ig_split[m] # set unmatched detections outside of area range to ignore a = np.array([d['area'] < a_rng[0] or d['area'] > a_rng[1] for d in dt ]).reshape((1, len(dt))) dt_ig = np.logical_or(dt_ig, np.logical_and(dtm == 0, np.repeat(a, tt, 0))) # Activate to ignore the seen-class detections. # Take only eval_split (eg, nonvoc) and ignore seen_split (eg, voc). if dt_ig_split.sum() > 0: dtm = dtm[:, dt_ig_split == 0] dt_ig = dt_ig[:, dt_ig_split == 0] len_dt = min(max_det, len(dt)) dt = [dt[i] for i in range(len_dt) if dt_ig_split[i] == 0] # store results for given image and category return { 'image_id': img_id, 'category_id': cat_id, 'aRng': a_rng, 'maxDet': max_det, 'dtIds': [d['id'] for d in dt], 'gtIds': [g['id'] for g in gt], 'dtMatches': dtm, 'gtMatches': gtm, 'dtScores': [d['score'] for d in dt], 'gtIgnore': gt_ig, 'dtIgnore': dt_ig, } class MetricWrapper(object): """Metric Wrapper of the COCO evaluator.""" # This is only a wrapper for COCO metric and works on for numpy array. So it # doesn't inherit from tf_keras.layers.Layer or tf_keras.metrics.Metric. def __init__(self, evaluator): self._evaluator = evaluator def update_state(self, y_true, y_pred): """Update internal states.""" labels = tf.nest.map_structure(lambda x: x.numpy(), y_true) outputs = tf.nest.map_structure(lambda x: x.numpy(), y_pred) groundtruths = {} predictions = {} for key, val in outputs.items(): if isinstance(val, tuple): val = np.concatenate(val) predictions[key] = val for key, val in labels.items(): if isinstance(val, tuple): val = np.concatenate(val) groundtruths[key] = val self._evaluator.update(predictions, groundtruths) def result(self): return self._evaluator.evaluate() def reset_states(self): return self._evaluator.reset() class COCOEvaluator(object): """COCO evaluation metric class.""" def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True): """Constructs COCO evaluation class. The class provides the interface to metrics_fn in TPUEstimator. The _update_op() takes detections from each image and push them to self.detections. The _evaluate() loads a JSON file in COCO annotation format as the groundtruths and runs COCO evaluation. Args: annotation_file: a JSON file that stores annotations of the eval dataset. If `annotation_file` is None, groundtruth annotations will be loaded from the dataloader. include_mask: a boolean to indicate whether or not to include the mask eval. need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back to absolute values (`image_info` is needed in this case). """ if annotation_file: if annotation_file.startswith('gs://'): _, local_val_json = tempfile.mkstemp(suffix='.json') tf.io.gfile.remove(local_val_json) tf.io.gfile.copy(annotation_file, local_val_json) atexit.register(tf.io.gfile.remove, local_val_json) else: local_val_json = annotation_file self._coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if include_mask else 'box'), annotation_file=local_val_json) self._annotation_file = annotation_file self._include_mask = include_mask self._metric_names = [ 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10', 'ARmax100', 'ARs', 'ARm', 'ARl' ] self._required_prediction_fields = [ 'source_id', 'num_detections', 'detection_classes', 'detection_scores', 'detection_boxes' ] self._need_rescale_bboxes = need_rescale_bboxes if self._need_rescale_bboxes: self._required_prediction_fields.append('image_info') self._required_groundtruth_fields = [ 'source_id', 'height', 'width', 'classes', 'boxes' ] if self._include_mask: mask_metric_names = ['mask_' + x for x in self._metric_names] self._metric_names.extend(mask_metric_names) self._required_prediction_fields.extend(['detection_masks']) self._required_groundtruth_fields.extend(['masks']) self.reset() def reset(self): """Resets internal states for a fresh run.""" self._predictions = {} if not self._annotation_file: self._groundtruths = {} def evaluate(self): """Evaluates with detections from all images with COCO API. Returns: coco_metric: float numpy array with shape [24] representing the coco-style evaluation metrics (box and mask). """ if not self._annotation_file: logging.info('Thre is no annotation_file in COCOEvaluator.') gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( self._groundtruths) coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if self._include_mask else 'box'), gt_dataset=gt_dataset) else: logging.info('Using annotation file: %s', self._annotation_file) coco_gt = self._coco_gt coco_predictions = coco_utils.convert_predictions_to_coco_annotations( self._predictions) coco_dt = coco_gt.loadRes(predictions=coco_predictions) image_ids = [ann['image_id'] for ann in coco_predictions] coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_metrics = coco_eval.stats if self._include_mask: mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm') mcoco_eval.params.imgIds = image_ids mcoco_eval.evaluate() mcoco_eval.accumulate() mcoco_eval.summarize() mask_coco_metrics = mcoco_eval.stats if self._include_mask: metrics = np.hstack((coco_metrics, mask_coco_metrics)) else: metrics = coco_metrics # Cleans up the internal variables in order for a fresh eval next time. self.reset() metrics_dict = {} for i, name in enumerate(self._metric_names): metrics_dict[name] = metrics[i].astype(np.float32) return metrics_dict def _process_predictions(self, predictions): image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2)) predictions['detection_boxes'] = ( predictions['detection_boxes'].astype(np.float32)) predictions['detection_boxes'] /= image_scale if 'detection_outer_boxes' in predictions: predictions['detection_outer_boxes'] = ( predictions['detection_outer_boxes'].astype(np.float32)) predictions['detection_outer_boxes'] /= image_scale def update(self, predictions, groundtruths=None): """Update and aggregate detection results and groundtruth data. Args: predictions: a dictionary of numpy arrays including the fields below. See different parsers under `../dataloader` for more details. Required fields: - source_id: a numpy array of int or string of shape [batch_size]. - image_info [if `need_rescale_bboxes` is True]: a numpy array of float of shape [batch_size, 4, 2]. - num_detections: a numpy array of int of shape [batch_size]. - detection_boxes: a numpy array of float of shape [batch_size, K, 4]. - detection_classes: a numpy array of int of shape [batch_size, K]. - detection_scores: a numpy array of float of shape [batch_size, K]. Optional fields: - detection_masks: a numpy array of float of shape [batch_size, K, mask_height, mask_width]. groundtruths: a dictionary of numpy arrays including the fields below. See also different parsers under `../dataloader` for more details. Required fields: - source_id: a numpy array of int or string of shape [batch_size]. - height: a numpy array of int of shape [batch_size]. - width: a numpy array of int of shape [batch_size]. - num_detections: a numpy array of int of shape [batch_size]. - boxes: a numpy array of float of shape [batch_size, K, 4]. - classes: a numpy array of int of shape [batch_size, K]. Optional fields: - is_crowds: a numpy array of int of shape [batch_size, K]. If the field is absent, it is assumed that this instance is not crowd. - areas: a numy array of float of shape [batch_size, K]. If the field is absent, the area is calculated using either boxes or masks depending on which one is available. - masks: a numpy array of float of shape [batch_size, K, mask_height, mask_width], Raises: ValueError: if the required prediction or groundtruth fields are not present in the incoming `predictions` or `groundtruths`. """ for k in self._required_prediction_fields: if k not in predictions: raise ValueError( 'Missing the required key `{}` in predictions!'.format(k)) if self._need_rescale_bboxes: self._process_predictions(predictions) for k, v in six.iteritems(predictions): if k not in self._predictions: self._predictions[k] = [v] else: self._predictions[k].append(v) if not self._annotation_file: assert groundtruths for k in self._required_groundtruth_fields: if k not in groundtruths: raise ValueError( 'Missing the required key `{}` in groundtruths!'.format(k)) for k, v in six.iteritems(groundtruths): if k not in self._groundtruths: self._groundtruths[k] = [v] else: self._groundtruths[k].append(v) class OlnXclassEvaluator(COCOEvaluator): """COCO evaluation metric class.""" def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True, use_category=True, seen_class='all'): """Constructs COCO evaluation class. The class provides the interface to metrics_fn in TPUEstimator. The _update_op() takes detections from each image and push them to self.detections. The _evaluate() loads a JSON file in COCO annotation format as the groundtruths and runs COCO evaluation. Args: annotation_file: a JSON file that stores annotations of the eval dataset. If `annotation_file` is None, groundtruth annotations will be loaded from the dataloader. include_mask: a boolean to indicate whether or not to include the mask eval. need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back to absolute values (`image_info` is needed in this case). use_category: if `False`, treat all object in all classes in one foreground category. seen_class: 'all' or 'voc' or 'nonvoc' """ super(OlnXclassEvaluator, self).__init__( annotation_file=annotation_file, include_mask=include_mask, need_rescale_bboxes=need_rescale_bboxes) self._use_category = use_category self._seen_class = seen_class self._seen_class_ids = class_utils.coco_split_class_ids(seen_class) self._metric_names = [ 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax10', 'ARmax20', 'ARmax50', 'ARmax100', 'ARmax200', 'ARmax10s', 'ARmax10m', 'ARmax10l' ] if self._seen_class != 'all': self._metric_names.extend([ 'AP_seen', 'AP50_seen', 'AP75_seen', 'APs_seen', 'APm_seen', 'APl_seen', 'ARmax10_seen', 'ARmax20_seen', 'ARmax50_seen', 'ARmax100_seen', 'ARmax200_seen', 'ARmax10s_seen', 'ARmax10m_seen', 'ARmax10l_seen', 'AP_novel', 'AP50_novel', 'AP75_novel', 'APs_novel', 'APm_novel', 'APl_novel', 'ARmax10_novel', 'ARmax20_novel', 'ARmax50_novel', 'ARmax100_novel', 'ARmax200_novel', 'ARmax10s_novel', 'ARmax10m_novel', 'ARmax10l_novel', ]) if self._include_mask: mask_metric_names = ['mask_' + x for x in self._metric_names] self._metric_names.extend(mask_metric_names) self._required_prediction_fields.extend(['detection_masks']) self._required_groundtruth_fields.extend(['masks']) self.reset() def evaluate(self): """Evaluates with detections from all images with COCO API. Returns: coco_metric: float numpy array with shape [24] representing the coco-style evaluation metrics (box and mask). """ if not self._annotation_file: logging.info('Thre is no annotation_file in COCOEvaluator.') gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( self._groundtruths) coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if self._include_mask else 'box'), gt_dataset=gt_dataset) else: logging.info('Using annotation file: %s', self._annotation_file) coco_gt = self._coco_gt coco_predictions = coco_utils.convert_predictions_to_coco_annotations( self._predictions) coco_dt = coco_gt.loadRes(predictions=coco_predictions) image_ids = [ann['image_id'] for ann in coco_predictions] # Class manipulation: 'all' split samples -> ignored_split = 0. for idx, ann in enumerate(coco_gt.dataset['annotations']): coco_gt.dataset['annotations'][idx]['ignored_split'] = 0 coco_eval = cocoeval.OlnCOCOevalXclassWrapper( coco_gt, coco_dt, iou_type='bbox') coco_eval.params.maxDets = [10, 20, 50, 100, 200] coco_eval.params.imgIds = image_ids coco_eval.params.useCats = 0 if not self._use_category else 1 coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_metrics = coco_eval.stats if self._include_mask: mcoco_eval = cocoeval.OlnCOCOevalXclassWrapper( coco_gt, coco_dt, iou_type='segm') mcoco_eval.params.maxDets = [10, 20, 50, 100, 200] mcoco_eval.params.imgIds = image_ids mcoco_eval.params.useCats = 0 if not self._use_category else 1 mcoco_eval.evaluate() mcoco_eval.accumulate() mcoco_eval.summarize() mask_coco_metrics = mcoco_eval.stats if self._include_mask: metrics = np.hstack((coco_metrics, mask_coco_metrics)) else: metrics = coco_metrics if self._seen_class != 'all': # for seen class eval, samples of novel_class are ignored. coco_gt_seen = copy.deepcopy(coco_gt) for idx, ann in enumerate(coco_gt.dataset['annotations']): if ann['category_id'] in self._seen_class_ids: coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 0 else: coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 1 coco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper( coco_gt_seen, coco_dt, iou_type='bbox') coco_eval_seen.params.maxDets = [10, 20, 50, 100, 200] coco_eval_seen.params.imgIds = image_ids coco_eval_seen.params.useCats = 0 if not self._use_category else 1 coco_eval_seen.evaluate() coco_eval_seen.accumulate() coco_eval_seen.summarize() coco_metrics_seen = coco_eval_seen.stats if self._include_mask: mcoco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper( coco_gt_seen, coco_dt, iou_type='segm') mcoco_eval_seen.params.maxDets = [10, 20, 50, 100, 200] mcoco_eval_seen.params.imgIds = image_ids mcoco_eval_seen.params.useCats = 0 if not self._use_category else 1 mcoco_eval_seen.evaluate() mcoco_eval_seen.accumulate() mcoco_eval_seen.summarize() mask_coco_metrics_seen = mcoco_eval_seen.stats # for novel class eval, samples of seen_class are ignored. coco_gt_novel = copy.deepcopy(coco_gt) for idx, ann in enumerate(coco_gt.dataset['annotations']): if ann['category_id'] in self._seen_class_ids: coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 1 else: coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 0 coco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper( coco_gt_novel, coco_dt, iou_type='bbox') coco_eval_novel.params.maxDets = [10, 20, 50, 100, 200] coco_eval_novel.params.imgIds = image_ids coco_eval_novel.params.useCats = 0 if not self._use_category else 1 coco_eval_novel.evaluate() coco_eval_novel.accumulate() coco_eval_novel.summarize() coco_metrics_novel = coco_eval_novel.stats if self._include_mask: mcoco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper( coco_gt_novel, coco_dt, iou_type='segm') mcoco_eval_novel.params.maxDets = [10, 20, 50, 100, 200] mcoco_eval_novel.params.imgIds = image_ids mcoco_eval_novel.params.useCats = 0 if not self._use_category else 1 mcoco_eval_novel.evaluate() mcoco_eval_novel.accumulate() mcoco_eval_novel.summarize() mask_coco_metrics_novel = mcoco_eval_novel.stats # Combine all splits. if self._include_mask: metrics = np.hstack(( coco_metrics, coco_metrics_seen, coco_metrics_novel, mask_coco_metrics, mask_coco_metrics_seen, mask_coco_metrics_novel)) else: metrics = np.hstack(( coco_metrics, coco_metrics_seen, coco_metrics_novel)) # Cleans up the internal variables in order for a fresh eval next time. self.reset() metrics_dict = {} for i, name in enumerate(self._metric_names): metrics_dict[name] = metrics[i].astype(np.float32) return metrics_dict class OlnXdataEvaluator(OlnXclassEvaluator): """COCO evaluation metric class.""" def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True, use_category=True, seen_class='all'): """Constructs COCO evaluation class. The class provides the interface to metrics_fn in TPUEstimator. The _update_op() takes detections from each image and push them to self.detections. The _evaluate() loads a JSON file in COCO annotation format as the groundtruths and runs COCO evaluation. Args: annotation_file: a JSON file that stores annotations of the eval dataset. If `annotation_file` is None, groundtruth annotations will be loaded from the dataloader. include_mask: a boolean to indicate whether or not to include the mask eval. need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back to absolute values (`image_info` is needed in this case). use_category: if `False`, treat all object in all classes in one foreground category. seen_class: 'all' or 'voc' or 'nonvoc' """ super(OlnXdataEvaluator, self).__init__( annotation_file=annotation_file, include_mask=include_mask, need_rescale_bboxes=need_rescale_bboxes, use_category=False, seen_class='all') def evaluate(self): """Evaluates with detections from all images with COCO API. Returns: coco_metric: float numpy array with shape [24] representing the coco-style evaluation metrics (box and mask). """ if not self._annotation_file: logging.info('Thre is no annotation_file in COCOEvaluator.') gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( self._groundtruths) coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if self._include_mask else 'box'), gt_dataset=gt_dataset) else: logging.info('Using annotation file: %s', self._annotation_file) coco_gt = self._coco_gt coco_predictions = coco_utils.convert_predictions_to_coco_annotations( self._predictions) coco_dt = coco_gt.loadRes(predictions=coco_predictions) image_ids = [ann['image_id'] for ann in coco_predictions] # Class manipulation: 'all' split samples -> ignored_split = 0. for idx, _ in enumerate(coco_gt.dataset['annotations']): coco_gt.dataset['annotations'][idx]['ignored_split'] = 0 coco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt, iou_type='bbox') coco_eval.params.maxDets = [10, 20, 50, 100, 200] coco_eval.params.imgIds = image_ids coco_eval.params.useCats = 0 if not self._use_category else 1 coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_metrics = coco_eval.stats if self._include_mask: mcoco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt, iou_type='segm') mcoco_eval.params.maxDets = [10, 20, 50, 100, 200] mcoco_eval.params.imgIds = image_ids mcoco_eval.params.useCats = 0 if not self._use_category else 1 mcoco_eval.evaluate() mcoco_eval.accumulate() mcoco_eval.summarize() mask_coco_metrics = mcoco_eval.stats if self._include_mask: metrics = np.hstack((coco_metrics, mask_coco_metrics)) else: metrics = coco_metrics # Cleans up the internal variables in order for a fresh eval next time. self.reset() metrics_dict = {} for i, name in enumerate(self._metric_names): metrics_dict[name] = metrics[i].astype(np.float32) return metrics_dict class ShapeMaskCOCOEvaluator(COCOEvaluator): """COCO evaluation metric class for ShapeMask.""" def __init__(self, mask_eval_class, **kwargs): """Constructs COCO evaluation class. The class provides the interface to metrics_fn in TPUEstimator. The _update_op() takes detections from each image and push them to self.detections. The _evaluate() loads a JSON file in COCO annotation format as the groundtruths and runs COCO evaluation. Args: mask_eval_class: the set of classes for mask evaluation. **kwargs: other keyword arguments passed to the parent class initializer. """ super(ShapeMaskCOCOEvaluator, self).__init__(**kwargs) self._mask_eval_class = mask_eval_class self._eval_categories = class_utils.coco_split_class_ids(mask_eval_class) if mask_eval_class != 'all': self._metric_names = [ x.replace('mask', 'novel_mask') for x in self._metric_names ] def evaluate(self): """Evaluates with detections from all images with COCO API. Returns: coco_metric: float numpy array with shape [24] representing the coco-style evaluation metrics (box and mask). """ if not self._annotation_file: gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( self._groundtruths) coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if self._include_mask else 'box'), gt_dataset=gt_dataset) else: coco_gt = self._coco_gt coco_predictions = coco_utils.convert_predictions_to_coco_annotations( self._predictions) coco_dt = coco_gt.loadRes(predictions=coco_predictions) image_ids = [ann['image_id'] for ann in coco_predictions] coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_metrics = coco_eval.stats if self._include_mask: mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm') mcoco_eval.params.imgIds = image_ids mcoco_eval.evaluate() mcoco_eval.accumulate() mcoco_eval.summarize() if self._mask_eval_class == 'all': metrics = np.hstack((coco_metrics, mcoco_eval.stats)) else: mask_coco_metrics = mcoco_eval.category_stats val_catg_idx = np.isin(mcoco_eval.params.catIds, self._eval_categories) # Gather the valid evaluation of the eval categories. if np.any(val_catg_idx): mean_val_metrics = [] for mid in range(len(self._metric_names) // 2): mean_val_metrics.append( np.nanmean(mask_coco_metrics[mid][val_catg_idx])) mean_val_metrics = np.array(mean_val_metrics) else: mean_val_metrics = np.zeros(len(self._metric_names) // 2) metrics = np.hstack((coco_metrics, mean_val_metrics)) else: metrics = coco_metrics # Cleans up the internal variables in order for a fresh eval next time. self.reset() metrics_dict = {} for i, name in enumerate(self._metric_names): metrics_dict[name] = metrics[i].astype(np.float32) return metrics_dict