# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Target and sampling related ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf, tf_keras from official.legacy.detection.ops import spatial_transform_ops from official.legacy.detection.utils import box_utils from official.vision.utils.object_detection import balanced_positive_negative_sampler def box_matching(boxes, gt_boxes, gt_classes): """Match boxes to groundtruth boxes. Given the proposal boxes and the groundtruth boxes and classes, perform the groundtruth matching by taking the argmax of the IoU between boxes and groundtruth boxes. Args: boxes: a tensor of shape of [batch_size, N, 4] representing the box coordiantes to be matched to groundtruth boxes. gt_boxes: a tensor of shape of [batch_size, MAX_INSTANCES, 4] representing the groundtruth box coordinates. It is padded with -1s to indicate the invalid boxes. gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box classes. It is padded with -1s to indicate the invalid classes. Returns: matched_gt_boxes: a tensor of shape of [batch_size, N, 4], representing the matched groundtruth box coordinates for each input box. If the box does not overlap with any groundtruth boxes, the matched boxes of it will be set to all 0s. matched_gt_classes: a tensor of shape of [batch_size, N], representing the matched groundtruth classes for each input box. If the box does not overlap with any groundtruth boxes, the matched box classes of it will be set to 0, which corresponds to the background class. matched_gt_indices: a tensor of shape of [batch_size, N], representing the indices of the matched groundtruth boxes in the original gt_boxes tensor. If the box does not overlap with any groundtruth boxes, the index of the matched groundtruth will be set to -1. matched_iou: a tensor of shape of [batch_size, N], representing the IoU between the box and its matched groundtruth box. The matched IoU is the maximum IoU of the box and all the groundtruth boxes. iou: a tensor of shape of [batch_size, N, K], representing the IoU matrix between boxes and the groundtruth boxes. The IoU between a box and the invalid groundtruth boxes whose coordinates are [-1, -1, -1, -1] is -1. """ # Compute IoU between boxes and gt_boxes. # iou <- [batch_size, N, K] iou = box_utils.bbox_overlap(boxes, gt_boxes) # max_iou <- [batch_size, N] # 0.0 -> no match to gt, or -1.0 match to no gt matched_iou = tf.reduce_max(iou, axis=-1) # background_box_mask <- bool, [batch_size, N] background_box_mask = tf.less_equal(matched_iou, 0.0) argmax_iou_indices = tf.argmax(iou, axis=-1, output_type=tf.int32) argmax_iou_indices_shape = tf.shape(argmax_iou_indices) batch_indices = ( tf.expand_dims(tf.range(argmax_iou_indices_shape[0]), axis=-1) * tf.ones([1, argmax_iou_indices_shape[-1]], dtype=tf.int32)) gather_nd_indices = tf.stack([batch_indices, argmax_iou_indices], axis=-1) matched_gt_boxes = tf.gather_nd(gt_boxes, gather_nd_indices) matched_gt_boxes = tf.where( tf.tile(tf.expand_dims(background_box_mask, axis=-1), [1, 1, 4]), tf.zeros_like(matched_gt_boxes, dtype=matched_gt_boxes.dtype), matched_gt_boxes) matched_gt_classes = tf.gather_nd(gt_classes, gather_nd_indices) matched_gt_classes = tf.where(background_box_mask, tf.zeros_like(matched_gt_classes), matched_gt_classes) matched_gt_indices = tf.where(background_box_mask, -tf.ones_like(argmax_iou_indices), argmax_iou_indices) return (matched_gt_boxes, matched_gt_classes, matched_gt_indices, matched_iou, iou) def assign_and_sample_proposals(proposed_boxes, gt_boxes, gt_classes, num_samples_per_image=512, mix_gt_boxes=True, fg_fraction=0.25, fg_iou_thresh=0.5, bg_iou_thresh_hi=0.5, bg_iou_thresh_lo=0.0): """Assigns the proposals with groundtruth classes and performs subsmpling. Given `proposed_boxes`, `gt_boxes`, and `gt_classes`, the function uses the following algorithm to generate the final `num_samples_per_image` RoIs. 1. Calculates the IoU between each proposal box and each gt_boxes. 2. Assigns each proposed box with a groundtruth class and box by choosing the largest IoU overlap. 3. Samples `num_samples_per_image` boxes from all proposed boxes, and returns box_targets, class_targets, and RoIs. Args: proposed_boxes: a tensor of shape of [batch_size, N, 4]. N is the number of proposals before groundtruth assignment. The last dimension is the box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax] format. gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4]. The coordinates of gt_boxes are in the pixel coordinates of the scaled image. This tensor might have padding of values -1 indicating the invalid box coordinates. gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This tensor might have paddings with values of -1 indicating the invalid classes. num_samples_per_image: a integer represents RoI minibatch size per image. mix_gt_boxes: a bool indicating whether to mix the groundtruth boxes before sampling proposals. fg_fraction: a float represents the target fraction of RoI minibatch that is labeled foreground (i.e., class > 0). fg_iou_thresh: a float represents the IoU overlap threshold for an RoI to be considered foreground (if >= fg_iou_thresh). bg_iou_thresh_hi: a float represents the IoU overlap threshold for an RoI to be considered background (class = 0 if overlap in [LO, HI)). bg_iou_thresh_lo: a float represents the IoU overlap threshold for an RoI to be considered background (class = 0 if overlap in [LO, HI)). Returns: sampled_rois: a tensor of shape of [batch_size, K, 4], representing the coordinates of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the box coordinates of the matched groundtruth boxes of the samples RoIs. sampled_gt_classes: a tensor of shape of [batch_size, K], storing the classes of the matched groundtruth boxes of the sampled RoIs. sampled_gt_indices: a tensor of shape of [batch_size, K], storing the indices of the sampled groudntruth boxes in the original `gt_boxes` tensor, i.e. gt_boxes[sampled_gt_indices[:, i]] = sampled_gt_boxes[:, i]. """ with tf.name_scope('sample_proposals'): if mix_gt_boxes: boxes = tf.concat([proposed_boxes, gt_boxes], axis=1) else: boxes = proposed_boxes (matched_gt_boxes, matched_gt_classes, matched_gt_indices, matched_iou, _) = box_matching(boxes, gt_boxes, gt_classes) positive_match = tf.greater(matched_iou, fg_iou_thresh) negative_match = tf.logical_and( tf.greater_equal(matched_iou, bg_iou_thresh_lo), tf.less(matched_iou, bg_iou_thresh_hi)) ignored_match = tf.less(matched_iou, 0.0) # re-assign negatively matched boxes to the background class. matched_gt_classes = tf.where(negative_match, tf.zeros_like(matched_gt_classes), matched_gt_classes) matched_gt_indices = tf.where(negative_match, tf.zeros_like(matched_gt_indices), matched_gt_indices) sample_candidates = tf.logical_and( tf.logical_or(positive_match, negative_match), tf.logical_not(ignored_match)) sampler = ( balanced_positive_negative_sampler.BalancedPositiveNegativeSampler( positive_fraction=fg_fraction, is_static=True)) batch_size, _ = sample_candidates.get_shape().as_list() sampled_indicators = [] for i in range(batch_size): sampled_indicator = sampler.subsample(sample_candidates[i], num_samples_per_image, positive_match[i]) sampled_indicators.append(sampled_indicator) sampled_indicators = tf.stack(sampled_indicators) _, sampled_indices = tf.nn.top_k( tf.cast(sampled_indicators, dtype=tf.int32), k=num_samples_per_image, sorted=True) sampled_indices_shape = tf.shape(sampled_indices) batch_indices = ( tf.expand_dims(tf.range(sampled_indices_shape[0]), axis=-1) * tf.ones([1, sampled_indices_shape[-1]], dtype=tf.int32)) gather_nd_indices = tf.stack([batch_indices, sampled_indices], axis=-1) sampled_rois = tf.gather_nd(boxes, gather_nd_indices) sampled_gt_boxes = tf.gather_nd(matched_gt_boxes, gather_nd_indices) sampled_gt_classes = tf.gather_nd(matched_gt_classes, gather_nd_indices) sampled_gt_indices = tf.gather_nd(matched_gt_indices, gather_nd_indices) return (sampled_rois, sampled_gt_boxes, sampled_gt_classes, sampled_gt_indices) def sample_and_crop_foreground_masks(candidate_rois, candidate_gt_boxes, candidate_gt_classes, candidate_gt_indices, gt_masks, num_mask_samples_per_image=128, mask_target_size=28): """Samples and creates cropped foreground masks for training. Args: candidate_rois: a tensor of shape of [batch_size, N, 4], where N is the number of candidate RoIs to be considered for mask sampling. It includes both positive and negative RoIs. The `num_mask_samples_per_image` positive RoIs will be sampled to create mask training targets. candidate_gt_boxes: a tensor of shape of [batch_size, N, 4], storing the corresponding groundtruth boxes to the `candidate_rois`. candidate_gt_classes: a tensor of shape of [batch_size, N], storing the corresponding groundtruth classes to the `candidate_rois`. 0 in the tensor corresponds to the background class, i.e. negative RoIs. candidate_gt_indices: a tensor of shape [batch_size, N], storing the corresponding groundtruth instance indices to the `candidate_gt_boxes`, i.e. gt_boxes[candidate_gt_indices[:, i]] = candidate_gt_boxes[:, i] and gt_boxes which is of shape [batch_size, MAX_INSTANCES, 4], M >= N, is the superset of candidate_gt_boxes. gt_masks: a tensor of [batch_size, MAX_INSTANCES, mask_height, mask_width] containing all the groundtruth masks which sample masks are drawn from. num_mask_samples_per_image: an integer which specifies the number of masks to sample. mask_target_size: an integer which specifies the final cropped mask size after sampling. The output masks are resized w.r.t the sampled RoIs. Returns: foreground_rois: a tensor of shape of [batch_size, K, 4] storing the RoI that corresponds to the sampled foreground masks, where K = num_mask_samples_per_image. foreground_classes: a tensor of shape of [batch_size, K] storing the classes corresponding to the sampled foreground masks. cropoped_foreground_masks: a tensor of shape of [batch_size, K, mask_target_size, mask_target_size] storing the cropped foreground masks used for training. """ with tf.name_scope('sample_and_crop_foreground_masks'): _, fg_instance_indices = tf.nn.top_k( tf.cast(tf.greater(candidate_gt_classes, 0), dtype=tf.int32), k=num_mask_samples_per_image) fg_instance_indices_shape = tf.shape(fg_instance_indices) batch_indices = ( tf.expand_dims(tf.range(fg_instance_indices_shape[0]), axis=-1) * tf.ones([1, fg_instance_indices_shape[-1]], dtype=tf.int32)) gather_nd_instance_indices = tf.stack([batch_indices, fg_instance_indices], axis=-1) foreground_rois = tf.gather_nd(candidate_rois, gather_nd_instance_indices) foreground_boxes = tf.gather_nd(candidate_gt_boxes, gather_nd_instance_indices) foreground_classes = tf.gather_nd(candidate_gt_classes, gather_nd_instance_indices) foreground_gt_indices = tf.gather_nd(candidate_gt_indices, gather_nd_instance_indices) foreground_gt_indices_shape = tf.shape(foreground_gt_indices) batch_indices = ( tf.expand_dims(tf.range(foreground_gt_indices_shape[0]), axis=-1) * tf.ones([1, foreground_gt_indices_shape[-1]], dtype=tf.int32)) gather_nd_gt_indices = tf.stack([batch_indices, foreground_gt_indices], axis=-1) foreground_masks = tf.gather_nd(gt_masks, gather_nd_gt_indices) cropped_foreground_masks = spatial_transform_ops.crop_mask_in_target_box( foreground_masks, foreground_boxes, foreground_rois, mask_target_size, sample_offset=0.5) return foreground_rois, foreground_classes, cropped_foreground_masks class ROISampler(tf_keras.layers.Layer): """Samples RoIs and creates training targets.""" def __init__(self, params): self._num_samples_per_image = params.num_samples_per_image self._fg_fraction = params.fg_fraction self._fg_iou_thresh = params.fg_iou_thresh self._bg_iou_thresh_hi = params.bg_iou_thresh_hi self._bg_iou_thresh_lo = params.bg_iou_thresh_lo self._mix_gt_boxes = params.mix_gt_boxes super(ROISampler, self).__init__(autocast=False) def call(self, rois, gt_boxes, gt_classes): """Sample and assign RoIs for training. Args: rois: a tensor of shape of [batch_size, N, 4]. N is the number of proposals before groundtruth assignment. The last dimension is the box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax] format. gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4]. The coordinates of gt_boxes are in the pixel coordinates of the scaled image. This tensor might have padding of values -1 indicating the invalid box coordinates. gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This tensor might have paddings with values of -1 indicating the invalid classes. Returns: sampled_rois: a tensor of shape of [batch_size, K, 4], representing the coordinates of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the box coordinates of the matched groundtruth boxes of the samples RoIs. sampled_gt_classes: a tensor of shape of [batch_size, K], storing the classes of the matched groundtruth boxes of the sampled RoIs. """ sampled_rois, sampled_gt_boxes, sampled_gt_classes, sampled_gt_indices = ( assign_and_sample_proposals( rois, gt_boxes, gt_classes, num_samples_per_image=self._num_samples_per_image, mix_gt_boxes=self._mix_gt_boxes, fg_fraction=self._fg_fraction, fg_iou_thresh=self._fg_iou_thresh, bg_iou_thresh_hi=self._bg_iou_thresh_hi, bg_iou_thresh_lo=self._bg_iou_thresh_lo)) return (sampled_rois, sampled_gt_boxes, sampled_gt_classes, sampled_gt_indices) class ROIScoreSampler(ROISampler): """Samples RoIs, RoI-scores and creates training targets.""" def __call__(self, rois, roi_scores, gt_boxes, gt_classes): """Sample and assign RoIs for training. Args: rois: a tensor of shape of [batch_size, N, 4]. N is the number of proposals before groundtruth assignment. The last dimension is the box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax] format. roi_scores: gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4]. The coordinates of gt_boxes are in the pixel coordinates of the scaled image. This tensor might have padding of values -1 indicating the invalid box coordinates. gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This tensor might have paddings with values of -1 indicating the invalid classes. Returns: sampled_rois: a tensor of shape of [batch_size, K, 4], representing the coordinates of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_roi_scores: sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the box coordinates of the matched groundtruth boxes of the samples RoIs. sampled_gt_classes: a tensor of shape of [batch_size, K], storing the classes of the matched groundtruth boxes of the sampled RoIs. """ (sampled_rois, sampled_roi_scores, sampled_gt_boxes, sampled_gt_classes, sampled_gt_indices) = ( self.assign_and_sample_proposals_and_scores( rois, roi_scores, gt_boxes, gt_classes, num_samples_per_image=self._num_samples_per_image, mix_gt_boxes=self._mix_gt_boxes, fg_fraction=self._fg_fraction, fg_iou_thresh=self._fg_iou_thresh, bg_iou_thresh_hi=self._bg_iou_thresh_hi, bg_iou_thresh_lo=self._bg_iou_thresh_lo)) return (sampled_rois, sampled_roi_scores, sampled_gt_boxes, sampled_gt_classes, sampled_gt_indices) def assign_and_sample_proposals_and_scores(self, proposed_boxes, proposed_scores, gt_boxes, gt_classes, num_samples_per_image=512, mix_gt_boxes=True, fg_fraction=0.25, fg_iou_thresh=0.5, bg_iou_thresh_hi=0.5, bg_iou_thresh_lo=0.0): """Assigns the proposals with groundtruth classes and performs subsmpling. Given `proposed_boxes`, `gt_boxes`, and `gt_classes`, the function uses the following algorithm to generate the final `num_samples_per_image` RoIs. 1. Calculates the IoU between each proposal box and each gt_boxes. 2. Assigns each proposed box with a groundtruth class and box by choosing the largest IoU overlap. 3. Samples `num_samples_per_image` boxes from all proposed boxes, and returns box_targets, class_targets, and RoIs. Args: proposed_boxes: a tensor of shape of [batch_size, N, 4]. N is the number of proposals before groundtruth assignment. The last dimension is the box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax] format. proposed_scores: a tensor of shape of [batch_size, N]. N is the number of proposals before groundtruth assignment. It is the rpn scores for all proposed boxes which can be either their classification or centerness scores. gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4]. The coordinates of gt_boxes are in the pixel coordinates of the scaled image. This tensor might have padding of values -1 indicating the invalid box coordinates. gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This tensor might have paddings with values of -1 indicating the invalid classes. num_samples_per_image: a integer represents RoI minibatch size per image. mix_gt_boxes: a bool indicating whether to mix the groundtruth boxes before sampling proposals. fg_fraction: a float represents the target fraction of RoI minibatch that is labeled foreground (i.e., class > 0). fg_iou_thresh: a float represents the IoU overlap threshold for an RoI to be considered foreground (if >= fg_iou_thresh). bg_iou_thresh_hi: a float represents the IoU overlap threshold for an RoI to be considered background (class = 0 if overlap in [LO, HI)). bg_iou_thresh_lo: a float represents the IoU overlap threshold for an RoI to be considered background (class = 0 if overlap in [LO, HI)). Returns: sampled_rois: a tensor of shape of [batch_size, K, 4], representing the coordinates of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_scores: a tensor of shape of [batch_size, K], representing the confidence score of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the box coordinates of the matched groundtruth boxes of the samples RoIs. sampled_gt_classes: a tensor of shape of [batch_size, K], storing the classes of the matched groundtruth boxes of the sampled RoIs. sampled_gt_indices: a tensor of shape of [batch_size, K], storing the indices of the sampled groudntruth boxes in the original `gt_boxes` tensor, i.e. gt_boxes[sampled_gt_indices[:, i]] = sampled_gt_boxes[:, i]. """ with tf.name_scope('sample_proposals_and_scores'): if mix_gt_boxes: boxes = tf.concat([proposed_boxes, gt_boxes], axis=1) gt_scores = tf.ones_like(gt_boxes[:, :, 0]) scores = tf.concat([proposed_scores, gt_scores], axis=1) else: boxes = proposed_boxes scores = proposed_scores (matched_gt_boxes, matched_gt_classes, matched_gt_indices, matched_iou, _) = box_matching(boxes, gt_boxes, gt_classes) positive_match = tf.greater(matched_iou, fg_iou_thresh) negative_match = tf.logical_and( tf.greater_equal(matched_iou, bg_iou_thresh_lo), tf.less(matched_iou, bg_iou_thresh_hi)) ignored_match = tf.less(matched_iou, 0.0) # re-assign negatively matched boxes to the background class. matched_gt_classes = tf.where(negative_match, tf.zeros_like(matched_gt_classes), matched_gt_classes) matched_gt_indices = tf.where(negative_match, tf.zeros_like(matched_gt_indices), matched_gt_indices) sample_candidates = tf.logical_and( tf.logical_or(positive_match, negative_match), tf.logical_not(ignored_match)) sampler = ( balanced_positive_negative_sampler.BalancedPositiveNegativeSampler( positive_fraction=fg_fraction, is_static=True)) batch_size, _ = sample_candidates.get_shape().as_list() sampled_indicators = [] for i in range(batch_size): sampled_indicator = sampler.subsample(sample_candidates[i], num_samples_per_image, positive_match[i]) sampled_indicators.append(sampled_indicator) sampled_indicators = tf.stack(sampled_indicators) _, sampled_indices = tf.nn.top_k( tf.cast(sampled_indicators, dtype=tf.int32), k=num_samples_per_image, sorted=True) sampled_indices_shape = tf.shape(sampled_indices) batch_indices = ( tf.expand_dims(tf.range(sampled_indices_shape[0]), axis=-1) * tf.ones([1, sampled_indices_shape[-1]], dtype=tf.int32)) gather_nd_indices = tf.stack([batch_indices, sampled_indices], axis=-1) sampled_rois = tf.gather_nd(boxes, gather_nd_indices) sampled_roi_scores = tf.gather_nd(scores, gather_nd_indices) sampled_gt_boxes = tf.gather_nd(matched_gt_boxes, gather_nd_indices) sampled_gt_classes = tf.gather_nd(matched_gt_classes, gather_nd_indices) sampled_gt_indices = tf.gather_nd(matched_gt_indices, gather_nd_indices) return (sampled_rois, sampled_roi_scores, sampled_gt_boxes, sampled_gt_classes, sampled_gt_indices) class MaskSampler(tf_keras.layers.Layer): """Samples and creates mask training targets.""" def __init__(self, mask_target_size, num_mask_samples_per_image): self._mask_target_size = mask_target_size self._num_mask_samples_per_image = num_mask_samples_per_image super(MaskSampler, self).__init__(autocast=False) def call(self, candidate_rois, candidate_gt_boxes, candidate_gt_classes, candidate_gt_indices, gt_masks): """Sample and create mask targets for training. Args: candidate_rois: a tensor of shape of [batch_size, N, 4], where N is the number of candidate RoIs to be considered for mask sampling. It includes both positive and negative RoIs. The `num_mask_samples_per_image` positive RoIs will be sampled to create mask training targets. candidate_gt_boxes: a tensor of shape of [batch_size, N, 4], storing the corresponding groundtruth boxes to the `candidate_rois`. candidate_gt_classes: a tensor of shape of [batch_size, N], storing the corresponding groundtruth classes to the `candidate_rois`. 0 in the tensor corresponds to the background class, i.e. negative RoIs. candidate_gt_indices: a tensor of shape [batch_size, N], storing the corresponding groundtruth instance indices to the `candidate_gt_boxes`, i.e. gt_boxes[candidate_gt_indices[:, i]] = candidate_gt_boxes[:, i], where gt_boxes which is of shape [batch_size, MAX_INSTANCES, 4], M >= N, is the superset of candidate_gt_boxes. gt_masks: a tensor of [batch_size, MAX_INSTANCES, mask_height, mask_width] containing all the groundtruth masks which sample masks are drawn from. after sampling. The output masks are resized w.r.t the sampled RoIs. Returns: foreground_rois: a tensor of shape of [batch_size, K, 4] storing the RoI that corresponds to the sampled foreground masks, where K = num_mask_samples_per_image. foreground_classes: a tensor of shape of [batch_size, K] storing the classes corresponding to the sampled foreground masks. cropoped_foreground_masks: a tensor of shape of [batch_size, K, mask_target_size, mask_target_size] storing the cropped foreground masks used for training. """ foreground_rois, foreground_classes, cropped_foreground_masks = ( sample_and_crop_foreground_masks(candidate_rois, candidate_gt_boxes, candidate_gt_classes, candidate_gt_indices, gt_masks, self._num_mask_samples_per_image, self._mask_target_size)) return foreground_rois, foreground_classes, cropped_foreground_masks