# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the classifier trainer models.""" import functools import json import os import sys from typing import Any, Callable, Iterable, Mapping, MutableMapping, Optional, Tuple from absl import flags from absl.testing import flagsaver from absl.testing import parameterized import tensorflow as tf, tf_keras from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from official.legacy.image_classification import classifier_trainer from official.utils.flags import core as flags_core classifier_trainer.define_classifier_flags() def distribution_strategy_combinations() -> Iterable[Tuple[Any, ...]]: """Returns the combinations of end-to-end tests to run.""" return combinations.combine( distribution=[ strategy_combinations.default_strategy, strategy_combinations.cloud_tpu_strategy, strategy_combinations.one_device_strategy_gpu, strategy_combinations.mirrored_strategy_with_two_gpus, ], model=[ 'efficientnet', 'resnet', 'vgg', ], dataset=[ 'imagenet', ], ) def get_params_override(params_override: Mapping[str, Any]) -> str: """Converts params_override dict to string command.""" return '--params_override=' + json.dumps(params_override) def basic_params_override(dtype: str = 'float32') -> MutableMapping[str, Any]: """Returns a basic parameter configuration for testing.""" return { 'train_dataset': { 'builder': 'synthetic', 'use_per_replica_batch_size': True, 'batch_size': 1, 'image_size': 224, 'dtype': dtype, }, 'validation_dataset': { 'builder': 'synthetic', 'batch_size': 1, 'use_per_replica_batch_size': True, 'image_size': 224, 'dtype': dtype, }, 'train': { 'steps': 1, 'epochs': 1, 'callbacks': { 'enable_checkpoint_and_export': True, 'enable_tensorboard': False, }, }, 'evaluation': { 'steps': 1, }, } @flagsaver.flagsaver def run_end_to_end(main: Callable[[Any], None], extra_flags: Optional[Iterable[str]] = None, model_dir: Optional[str] = None): """Runs the classifier trainer end-to-end.""" extra_flags = [] if extra_flags is None else extra_flags args = [sys.argv[0], '--model_dir', model_dir] + extra_flags flags_core.parse_flags(argv=args) main(flags.FLAGS) class ClassifierTest(tf.test.TestCase, parameterized.TestCase): """Unit tests for Keras models.""" _tempdir = None @classmethod def setUpClass(cls): # pylint: disable=invalid-name super(ClassifierTest, cls).setUpClass() def tearDown(self): super(ClassifierTest, self).tearDown() tf.io.gfile.rmtree(self.get_temp_dir()) @combinations.generate(distribution_strategy_combinations()) def test_end_to_end_train_and_eval(self, distribution, model, dataset): """Test train_and_eval and export for Keras classifier models.""" # Some parameters are not defined as flags (e.g. cannot run # classifier_train.py --batch_size=...) by design, so use # "--params_override=..." instead model_dir = self.create_tempdir().full_path base_flags = [ '--data_dir=not_used', '--model_type=' + model, '--dataset=' + dataset, ] train_and_eval_flags = base_flags + [ get_params_override(basic_params_override()), '--mode=train_and_eval', ] run = functools.partial( classifier_trainer.run, strategy_override=distribution) run_end_to_end( main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) @combinations.generate( combinations.combine( distribution=[ strategy_combinations.one_device_strategy_gpu, ], model=[ 'efficientnet', 'resnet', 'vgg', ], dataset='imagenet', dtype='float16', )) def test_gpu_train(self, distribution, model, dataset, dtype): """Test train_and_eval and export for Keras classifier models.""" # Some parameters are not defined as flags (e.g. cannot run # classifier_train.py --batch_size=...) by design, so use # "--params_override=..." instead model_dir = self.create_tempdir().full_path base_flags = [ '--data_dir=not_used', '--model_type=' + model, '--dataset=' + dataset, ] train_and_eval_flags = base_flags + [ get_params_override(basic_params_override(dtype)), '--mode=train_and_eval', ] export_params = basic_params_override() export_path = os.path.join(model_dir, 'export') export_params['export'] = {} export_params['export']['destination'] = export_path export_flags = base_flags + [ '--mode=export_only', get_params_override(export_params) ] run = functools.partial( classifier_trainer.run, strategy_override=distribution) run_end_to_end( main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) run_end_to_end(main=run, extra_flags=export_flags, model_dir=model_dir) self.assertTrue(os.path.exists(export_path)) @combinations.generate( combinations.combine( distribution=[ strategy_combinations.cloud_tpu_strategy, ], model=[ 'efficientnet', 'resnet', 'vgg', ], dataset='imagenet', dtype='bfloat16', )) def test_tpu_train(self, distribution, model, dataset, dtype): """Test train_and_eval and export for Keras classifier models.""" # Some parameters are not defined as flags (e.g. cannot run # classifier_train.py --batch_size=...) by design, so use # "--params_override=..." instead model_dir = self.create_tempdir().full_path base_flags = [ '--data_dir=not_used', '--model_type=' + model, '--dataset=' + dataset, ] train_and_eval_flags = base_flags + [ get_params_override(basic_params_override(dtype)), '--mode=train_and_eval', ] run = functools.partial( classifier_trainer.run, strategy_override=distribution) run_end_to_end( main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) @combinations.generate(distribution_strategy_combinations()) def test_end_to_end_invalid_mode(self, distribution, model, dataset): """Test the Keras EfficientNet model with `strategy`.""" model_dir = self.create_tempdir().full_path extra_flags = [ '--data_dir=not_used', '--mode=invalid_mode', '--model_type=' + model, '--dataset=' + dataset, get_params_override(basic_params_override()), ] run = functools.partial( classifier_trainer.run, strategy_override=distribution) with self.assertRaises(ValueError): run_end_to_end(main=run, extra_flags=extra_flags, model_dir=model_dir) if __name__ == '__main__': tf.test.main()