# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration definitions for ResNet losses, learning rates, and optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import dataclasses from official.legacy.image_classification.configs import base_configs from official.modeling.hyperparams import base_config @dataclasses.dataclass class ResNetModelConfig(base_configs.ModelConfig): """Configuration for the ResNet model.""" name: str = 'ResNet' num_classes: int = 1000 model_params: base_config.Config = dataclasses.field( # pylint: disable=g-long-lambda default_factory=lambda: { 'num_classes': 1000, 'batch_size': None, 'use_l2_regularizer': True, 'rescale_inputs': False, }) # pylint: enable=g-long-lambda loss: base_configs.LossConfig = dataclasses.field( default_factory=lambda: base_configs.LossConfig( # pylint: disable=g-long-lambda name='sparse_categorical_crossentropy' ) ) optimizer: base_configs.OptimizerConfig = dataclasses.field( default_factory=lambda: base_configs.OptimizerConfig( # pylint: disable=g-long-lambda name='momentum', decay=0.9, epsilon=0.001, momentum=0.9, moving_average_decay=None, ) ) learning_rate: base_configs.LearningRateConfig = dataclasses.field( default_factory=lambda: base_configs.LearningRateConfig( # pylint: disable=g-long-lambda name='stepwise', initial_lr=0.1, examples_per_epoch=1281167, boundaries=[30, 60, 80], warmup_epochs=5, scale_by_batch_size=1.0 / 256.0, multipliers=[0.1 / 256, 0.01 / 256, 0.001 / 256, 0.0001 / 256], ) )