# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for masked language model network.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import masked_lm from official.nlp.modeling.networks import bert_encoder class MaskedLMTest(tf.test.TestCase, parameterized.TestCase): def create_layer(self, vocab_size, hidden_size, output='predictions', xformer_stack=None): # First, create a transformer stack that we can use to get the LM's # vocabulary weight. if xformer_stack is None: xformer_stack = bert_encoder.BertEncoder( vocab_size=vocab_size, num_layers=1, hidden_size=hidden_size, num_attention_heads=4, ) # Create a maskedLM from the transformer stack. test_layer = masked_lm.MaskedLM( embedding_table=xformer_stack.get_embedding_table(), output=output) return test_layer def test_layer_creation(self): vocab_size = 100 sequence_length = 32 hidden_size = 64 num_predictions = 21 test_layer = self.create_layer( vocab_size=vocab_size, hidden_size=hidden_size) # Make sure that the output tensor of the masked LM is the right shape. lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) output = test_layer(lm_input_tensor, masked_positions=masked_positions) expected_output_shape = [None, num_predictions, vocab_size] self.assertEqual(expected_output_shape, output.shape.as_list()) def test_layer_invocation_with_external_logits(self): vocab_size = 100 sequence_length = 32 hidden_size = 64 num_predictions = 21 xformer_stack = bert_encoder.BertEncoder( vocab_size=vocab_size, num_layers=1, hidden_size=hidden_size, num_attention_heads=4, ) test_layer = self.create_layer( vocab_size=vocab_size, hidden_size=hidden_size, xformer_stack=xformer_stack, output='predictions') logit_layer = self.create_layer( vocab_size=vocab_size, hidden_size=hidden_size, xformer_stack=xformer_stack, output='logits') # Create a model from the masked LM layer. lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) output = test_layer(lm_input_tensor, masked_positions) logit_output = logit_layer(lm_input_tensor, masked_positions) logit_output = tf_keras.layers.Activation(tf.nn.log_softmax)(logit_output) logit_layer.set_weights(test_layer.get_weights()) model = tf_keras.Model([lm_input_tensor, masked_positions], output) logits_model = tf_keras.Model(([lm_input_tensor, masked_positions]), logit_output) # Invoke the masked LM on some fake data to make sure there are no runtime # errors in the code. batch_size = 3 lm_input_data = 10 * np.random.random_sample( (batch_size, sequence_length, hidden_size)) masked_position_data = np.random.randint( sequence_length, size=(batch_size, num_predictions)) # ref_outputs = model.predict([lm_input_data, masked_position_data]) # outputs = logits_model.predict([lm_input_data, masked_position_data]) ref_outputs = model([lm_input_data, masked_position_data]) outputs = logits_model([lm_input_data, masked_position_data]) # Ensure that the tensor shapes are correct. expected_output_shape = (batch_size, num_predictions, vocab_size) self.assertEqual(expected_output_shape, ref_outputs.shape) self.assertEqual(expected_output_shape, outputs.shape) self.assertAllClose(ref_outputs, outputs) @parameterized.named_parameters( dict( testcase_name='default', num_predictions=21, ), dict( testcase_name='zero_predictions', num_predictions=0, ), ) def test_layer_invocation(self, num_predictions): vocab_size = 100 sequence_length = 32 hidden_size = 64 test_layer = self.create_layer( vocab_size=vocab_size, hidden_size=hidden_size) # Create a model from the masked LM layer. lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size)) masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32) output = test_layer(lm_input_tensor, masked_positions) model = tf_keras.Model([lm_input_tensor, masked_positions], output) # Invoke the masked LM on some fake data to make sure there are no runtime # errors in the code. batch_size = 3 lm_input_data = 10 * np.random.random_sample( (batch_size, sequence_length, hidden_size)) masked_position_data = np.random.randint( 2, size=(batch_size, num_predictions)) res = model.predict([lm_input_data, masked_position_data]) expected_shape = (batch_size, num_predictions, vocab_size) self.assertEqual(expected_shape, res.shape) def test_unknown_output_type_fails(self): with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'): _ = self.create_layer(vocab_size=8, hidden_size=8, output='bad') if __name__ == '__main__': tf.test.main()