# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Keras-based masked softmax layer.""" import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import masked_softmax class MaskedSoftmaxLayerTest(tf.test.TestCase): def test_non_masked_softmax(self): test_layer = masked_softmax.MaskedSoftmax() input_tensor = tf_keras.Input(shape=(4, 8)) output = test_layer(input_tensor) model = tf_keras.Model(input_tensor, output) input_data = 10 * np.random.random_sample((3, 4, 8)) output_data = model.predict(input_data) expected_data = tf.nn.softmax(input_data) self.assertAllClose(expected_data, output_data) def test_masked_softmax(self): test_layer = masked_softmax.MaskedSoftmax() input_tensor = tf_keras.Input(shape=(4, 8)) mask_tensor = tf_keras.Input(shape=(4, 8)) output = test_layer(input_tensor, mask_tensor) model = tf_keras.Model([input_tensor, mask_tensor], output) input_data = 10 * np.random.random_sample((3, 4, 8)) mask_data = np.random.randint(2, size=(3, 4, 8)) output_data = model.predict([input_data, mask_data]) expected_zeros = np.greater(mask_data, 0) is_zeros = np.greater(output_data, 0) self.assertAllEqual(expected_zeros, is_zeros) def test_masked_softmax_with_none_mask(self): test_layer = masked_softmax.MaskedSoftmax() input_tensor = tf_keras.Input(shape=(4, 8)) output = test_layer(input_tensor, None) model = tf_keras.Model(input_tensor, output) input_data = 10 * np.random.random_sample((3, 4, 8)) output_data = model.predict(input_data) expected_data = tf.nn.softmax(input_data) self.assertAllClose(expected_data, output_data) def test_softmax_with_axes_expansion(self): test_layer = masked_softmax.MaskedSoftmax(mask_expansion_axes=[1]) input_tensor = tf_keras.Input(shape=(4, 8)) mask_tensor = tf_keras.Input(shape=(8)) output = test_layer(input_tensor, mask_tensor) model = tf_keras.Model([input_tensor, mask_tensor], output) input_data = 10 * np.random.random_sample((3, 4, 8)) mask_data = np.random.randint(2, size=(3, 8)) output_data = model.predict([input_data, mask_data]) expanded_mask = np.expand_dims(mask_data, axis=1) * np.ones_like(input_data) expected_zeros = np.greater(expanded_mask, 0) is_zeros = np.greater(output_data, 0) self.assertAllEqual(expected_zeros, is_zeros) def test_masked_softmax_high_dims(self): test_layer = masked_softmax.MaskedSoftmax( mask_expansion_axes=[1], normalization_axes=[6, 7]) input_shape = [2, 3, 4, 5, 6, 7, 8] mask_shape = [5, 6, 7, 8] input_tensor = tf_keras.Input(shape=input_shape) mask_tensor = tf_keras.Input(shape=mask_shape) output = test_layer(input_tensor, mask_tensor) model = tf_keras.Model([input_tensor, mask_tensor], output) input_data = 10 * np.random.random_sample([3] + input_shape) mask_data = np.random.randint(2, size=[3] + mask_shape) output_data = model.predict([input_data, mask_data]) expanded_mask = np.expand_dims(mask_data, axis=1) expanded_mask = np.expand_dims(expanded_mask, axis=1) expanded_mask = np.expand_dims( expanded_mask, axis=1) * np.ones_like(input_data) expected_zeros = np.greater(expanded_mask, 0) is_zeros = np.greater(output_data, 0) self.assertAllEqual(expected_zeros, is_zeros) def test_serialize_deserialize(self): test_layer = masked_softmax.MaskedSoftmax( mask_expansion_axes=[1], normalization_axes=[6, 7]) new_layer = masked_softmax.MaskedSoftmax.from_config( test_layer.get_config()) # If the serialization was successful, the new config should match the old. self.assertAllEqual(test_layer.get_config(), new_layer.get_config()) if __name__ == '__main__': tf.test.main()