# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for projects.nhnet.multi_channel_attention.""" import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import multi_channel_attention class MultiChannelAttentionTest(tf.test.TestCase): def test_doc_attention(self): num_heads = 2 doc_attention = multi_channel_attention.VotingAttention( num_heads, head_size=8) num_docs = 3 inputs = np.zeros((2, num_docs, 10, 16), dtype=np.float32) doc_mask = np.zeros((2, num_docs), dtype=np.float32) outputs = doc_attention(inputs, doc_mask) self.assertEqual(outputs.shape, (2, num_docs)) def test_multi_channel_attention(self): num_heads = 2 num_docs = 5 attention_layer = multi_channel_attention.MultiChannelAttention( num_heads, key_dim=2) from_data = 10 * np.random.random_sample((3, 4, 8)) to_data = 10 * np.random.random_sample((3, num_docs, 2, 8)) mask_data = np.random.randint(2, size=(3, num_docs, 4, 2)) doc_probs = np.random.randint( 2, size=(3, num_heads, 4, num_docs)).astype(float) outputs = attention_layer( query=from_data, value=to_data, context_attention_weights=doc_probs, attention_mask=mask_data) self.assertEqual(outputs.shape, (3, 4, 8)) if __name__ == "__main__": tf.test.main()