# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Keras-based positional embedding layer.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.layers import position_embedding class PositionEmbeddingLayerTest(tf.test.TestCase): def test_static_layer_output_shape(self): # Create a 3-dimensional input (the first dimension is implicit). sequence_length = 21 test_layer = position_embedding.PositionEmbedding( max_length=sequence_length) width = 30 input_tensor = tf_keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(input_tensor) # When using static positional embedding shapes, the output is expected # to be the same as the input shape in all dimensions save batch. expected_output_shape = [None, sequence_length, width] self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) # The default output dtype for this layer should be tf.float32. self.assertEqual(tf.float32, output_tensor.dtype) def test_non_default_axis_static(self): # Create a 3-dimensional input (the first dimension is implicit). sequence_length = 21 test_layer = position_embedding.PositionEmbedding( max_length=sequence_length, seq_axis=2) width = 30 input_tensor = tf_keras.Input(shape=(width, sequence_length, width)) output_tensor = test_layer(input_tensor) # When using static positional embedding shapes, the output is expected # to be the same as the input shape in all dimensions save batch. expected_output_shape = [None, width, sequence_length, width] self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) # The default output dtype for this layer should be tf.float32. self.assertEqual(tf.float32, output_tensor.dtype) def test_float16_dtype(self): # Create a 3-dimensional input (the first dimension is implicit). sequence_length = 21 test_layer = position_embedding.PositionEmbedding( max_length=sequence_length, dtype="float16") width = 30 input_tensor = tf_keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(input_tensor) # When using static positional embedding shapes, the output is expected # to be the same as the input shape in all dimensions save batch. expected_output_shape = [None, sequence_length, width] self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) # The default output dtype for this layer should be tf.float32. self.assertEqual(tf.float16, output_tensor.dtype) def test_dynamic_layer_output_shape(self): max_sequence_length = 40 test_layer = position_embedding.PositionEmbedding( max_length=max_sequence_length) # Create a 3-dimensional input (the first dimension is implicit). width = 30 input_tensor = tf_keras.Input(shape=(None, width)) output_tensor = test_layer(input_tensor) # When using dynamic positional embedding shapes, the output is expected # to be the same as the input shape in all dimensions - but may be None if # the input shape is None there. expected_output_shape = [None, None, width] self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) def test_non_default_axis_dynamic(self): max_sequence_length = 60 test_layer = position_embedding.PositionEmbedding( max_length=max_sequence_length, seq_axis=2) # Create a 3-dimensional input (the first dimension is implicit). width = 30 input_tensor = tf_keras.Input(shape=(None, None, width)) output_tensor = test_layer(input_tensor) # When using dynamic positional embedding shapes, the output is expected # to be the same as the input shape in all dimensions - but may be None if # the input shape is None there. expected_output_shape = [None, None, None, width] self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) def test_dynamic_layer_slicing(self): max_sequence_length = 40 test_layer = position_embedding.PositionEmbedding( max_length=max_sequence_length) # Create a 3-dimensional input (the first dimension is implicit). width = 30 input_tensor = tf_keras.Input(shape=(None, width)) output_tensor = test_layer(input_tensor) model = tf_keras.Model(input_tensor, output_tensor) # Create input data that is shorter than max_sequence_length, which should # trigger a down-slice. input_length = 17 # Note: This test explicitly uses a batch size of 1. This is to get around # Keras' restriction on Model invocations: inputs are expected to have the # same batch cardinality as outputs. In practice, this layer should be used # inside a model, where it can be projected when added to another tensor. input_data = np.ones((1, input_length, width)) output_data = model.predict(input_data) self.assertAllEqual([1, input_length, width], output_data.shape) class RelativePositionEmbeddingLayerTest(tf.test.TestCase): def test_relative_tensor_input(self): hidden_size = 8 test_layer = position_embedding.RelativePositionEmbedding( hidden_size=hidden_size) # create a 3-dimensional input for test_layer to infer length as 1. input_tensor = tf.constant([[[0] * hidden_size]]) output_tensor = test_layer(input_tensor) # expected output is the theoretical result of the input based on # sine cosine relative position embedding formula. expected_output_tensor = tf.constant([[0, 0, 0, 0, 1, 1, 1, 1]]) self.assertAllEqual(output_tensor, expected_output_tensor) def test_relative_length_input(self): hidden_size = 8 # When we do not have tensor as input, we explicitly specify length # value when initializing test_layer. test_layer = position_embedding.RelativePositionEmbedding( hidden_size=hidden_size) input_tensor = None output_tensor = test_layer(input_tensor, length=1) # expected output is the theoretical result of the input based on # sine cosine relative position embedding formula. expected_output_tensor = tf.constant([[0, 0, 0, 0, 1, 1, 1, 1]]) self.assertAllEqual(output_tensor, expected_output_tensor) class RelativePositionBiasTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters(("bidirectional", True), ("unidirectional", False)) def test_relative_position_bias(self, bidirectional): query = tf.zeros((4, 4, 2)) key = tf.zeros((4, 2, 2)) l = position_embedding.RelativePositionBias( num_heads=3, bidirectional=bidirectional, name="foo") self.assertEqual(l(query, key).shape, (4, 3, 4, 2)) self.assertLen(l.trainable_variables, 1) self.assertEqual(l.trainable_variables[0].name, "foo/rel_embedding:0") def test_relative_position_bucket(self): context_position = tf.range(3)[:, None] memory_position = tf.range(2)[None, :] relative_position = memory_position - context_position outputs = position_embedding._relative_position_bucket(relative_position) self.assertAllEqual(outputs.numpy(), np.array([[0, 17], [1, 0], [2, 1]])) outputs = position_embedding._relative_position_bucket( relative_position, bidirectional=False) self.assertAllEqual(outputs.numpy(), np.array([[0, 0], [1, 0], [2, 1]])) if __name__ == "__main__": tf.test.main()