# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for transformer-based bert encoder network.""" # Import libraries from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.modeling.networks import bert_encoder class BertEncoderTest(tf.test.TestCase, parameterized.TestCase): def tearDown(self): super(BertEncoderTest, self).tearDown() tf_keras.mixed_precision.set_global_policy("float32") @parameterized.named_parameters( ("encoder_v2", bert_encoder.BertEncoderV2), ("encoder_v1", bert_encoder.BertEncoder), ) def test_dict_outputs_network_creation(self, encoder_cls): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. if encoder_cls is bert_encoder.BertEncoderV2: kwargs = {} else: kwargs = dict(dict_outputs=True) test_network = encoder_cls( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, **kwargs) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] self.assertIsInstance(test_network.transformer_layers, list) self.assertLen(test_network.transformer_layers, 3) self.assertIsInstance(test_network.pooler_layer, tf_keras.layers.Dense) expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, data.dtype) self.assertAllEqual(tf.float32, pooled.dtype) @parameterized.named_parameters( ("encoder_v2", bert_encoder.BertEncoderV2), ("encoder_v1", bert_encoder.BertEncoder), ) def test_dict_outputs_all_encoder_outputs_network_creation(self, encoder_cls): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. test_network = encoder_cls( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, dict_outputs=True) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) all_encoder_outputs = dict_outputs["encoder_outputs"] pooled = dict_outputs["pooled_output"] expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertLen(all_encoder_outputs, 3) for data in all_encoder_outputs: self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) self.assertAllEqual(tf.float32, pooled.dtype) @parameterized.named_parameters( ("encoder_v2", bert_encoder.BertEncoderV2), ("encoder_v1", bert_encoder.BertEncoder), ) def test_dict_outputs_network_creation_return_attention_scores( self, encoder_cls): hidden_size = 32 sequence_length = 21 num_attention_heads = 5 num_layers = 3 # Create a small BertEncoder for testing. test_network = encoder_cls( vocab_size=100, hidden_size=hidden_size, num_attention_heads=num_attention_heads, num_layers=num_layers, return_attention_scores=True, dict_outputs=True) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) all_attention_outputs = dict_outputs["attention_scores"] expected_data_shape = [ None, num_attention_heads, sequence_length, sequence_length ] self.assertLen(all_attention_outputs, num_layers) for data in all_attention_outputs: self.assertAllEqual(expected_data_shape, data.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, all_attention_outputs[-1].dtype) @parameterized.named_parameters( ("encoder_v2", bert_encoder.BertEncoderV2), ("encoder_v1", bert_encoder.BertEncoder), ) def test_dict_outputs_network_creation_with_float16_dtype(self, encoder_cls): hidden_size = 32 sequence_length = 21 tf_keras.mixed_precision.set_global_policy("mixed_float16") # Create a small BertEncoder for testing. test_network = encoder_cls( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, dict_outputs=True) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # If float_dtype is set to float16, the data output is float32 (from a layer # norm) and pool output should be float16. self.assertAllEqual(tf.float32, data.dtype) self.assertAllEqual(tf.float16, pooled.dtype) @parameterized.named_parameters( ("all_sequence_encoder_v1", bert_encoder.BertEncoder, None, 21), ("output_range_encoder_v1", bert_encoder.BertEncoder, 1, 1), ("all_sequence_encoder_v2", bert_encoder.BertEncoderV2, None, 21), ("output_range_encoder_v2", bert_encoder.BertEncoderV2, 1, 1), ) def test_dict_outputs_network_invocation( self, encoder_cls, output_range, out_seq_len): hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 # Create a small BertEncoder for testing. test_network = encoder_cls( vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, output_range=output_range, dict_outputs=True) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] # Create a model based off of this network: model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) # Invoke the model. We can't validate the output data here (the model is too # complex) but this will catch structural runtime errors. batch_size = 3 word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint( num_types, size=(batch_size, sequence_length)) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[1], out_seq_len) # Creates a BertEncoder with max_sequence_length != sequence_length max_sequence_length = 128 test_network = encoder_cls( vocab_size=vocab_size, hidden_size=hidden_size, max_sequence_length=max_sequence_length, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, dict_outputs=True) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[1], sequence_length) # Creates a BertEncoder with embedding_width != hidden_size test_network = encoder_cls( vocab_size=vocab_size, hidden_size=hidden_size, max_sequence_length=max_sequence_length, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, embedding_width=16, dict_outputs=True) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[-1], hidden_size) self.assertTrue(hasattr(test_network, "_embedding_projection")) def test_embeddings_as_inputs(self): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. test_network = bert_encoder.BertEncoderV2( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) test_network.build( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) embeddings = test_network.get_embedding_layer()(word_ids) # Calls with the embeddings. dict_outputs = test_network( dict( input_word_embeddings=embeddings, input_mask=mask, input_type_ids=type_ids)) all_encoder_outputs = dict_outputs["encoder_outputs"] pooled = dict_outputs["pooled_output"] expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertLen(all_encoder_outputs, 3) for data in all_encoder_outputs: self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) self.assertAllEqual(tf.float32, pooled.dtype) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( vocab_size=100, hidden_size=32, num_layers=3, num_attention_heads=2, max_sequence_length=21, type_vocab_size=12, inner_dim=1223, inner_activation="relu", output_dropout=0.05, attention_dropout=0.22, initializer="glorot_uniform", output_range=-1, embedding_width=16, embedding_layer=None, norm_first=False) with self.subTest("BertEncoder"): network = bert_encoder.BertEncoder(**kwargs) # Validate that the config can be forced to JSON. _ = network.to_json() # Tests model saving/loading with SavedModel. model_path = self.get_temp_dir() + "/model" network.save(model_path) _ = tf_keras.models.load_model(model_path) # Test model saving/loading with Keras V3. keras_path = self.get_temp_dir() + "/model.keras" network.save(keras_path) _ = tf_keras.models.load_model(keras_path) with self.subTest("BertEncoderV2"): new_net = bert_encoder.BertEncoderV2(**kwargs) inputs = new_net.inputs outputs = new_net(inputs) network_v2 = tf_keras.Model(inputs=inputs, outputs=outputs) # Validate that the config can be forced to JSON. _ = network_v2.to_json() # Tests model saving/loading with SavedModel. model_path = self.get_temp_dir() + "/v2_model" network_v2.save(model_path) _ = tf_keras.models.load_model(model_path) # Test model saving/loading with Keras V3. keras_path = self.get_temp_dir() + "/v2_model.keras" network_v2.save(keras_path) _ = tf_keras.models.load_model(keras_path) def test_network_creation(self): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. test_network = bert_encoder.BertEncoder( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) data, pooled = test_network([word_ids, mask, type_ids]) self.assertIsInstance(test_network.transformer_layers, list) self.assertLen(test_network.transformer_layers, 3) self.assertIsInstance(test_network.pooler_layer, tf_keras.layers.Dense) expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, data.dtype) self.assertAllEqual(tf.float32, pooled.dtype) test_network_dict = bert_encoder.BertEncoder( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, dict_outputs=True) # Create the inputs (note that the first dimension is implicit). inputs = dict( input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids) _ = test_network_dict(inputs) test_network_dict.set_weights(test_network.get_weights()) batch_size = 2 vocab_size = 100 num_types = 2 word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint( num_types, size=(batch_size, sequence_length)) list_outputs = test_network([word_id_data, mask_data, type_id_data]) dict_outputs = test_network_dict( dict( input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data)) self.assertAllEqual(list_outputs[0], dict_outputs["sequence_output"]) self.assertAllEqual(list_outputs[1], dict_outputs["pooled_output"]) def test_all_encoder_outputs_network_creation(self): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. test_network = bert_encoder.BertEncoder( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, return_all_encoder_outputs=True) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) all_encoder_outputs, pooled = test_network([word_ids, mask, type_ids]) expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertLen(all_encoder_outputs, 3) for data in all_encoder_outputs: self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) self.assertAllEqual(tf.float32, pooled.dtype) def test_attention_scores_output_network_creation(self): hidden_size = 32 sequence_length = 21 num_attention_heads = 5 num_layers = 3 # Create a small BertEncoder for testing. test_network = bert_encoder.BertEncoder( vocab_size=100, hidden_size=hidden_size, num_attention_heads=num_attention_heads, num_layers=num_layers, return_attention_scores=True) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) _, _, all_attention_outputs = test_network([word_ids, mask, type_ids]) expected_data_shape = [ None, num_attention_heads, sequence_length, sequence_length ] self.assertLen(all_attention_outputs, num_layers) for data in all_attention_outputs: self.assertAllEqual(expected_data_shape, data.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, all_attention_outputs[-1].dtype) def test_network_creation_with_float16_dtype(self): hidden_size = 32 sequence_length = 21 tf_keras.mixed_precision.set_global_policy("mixed_float16") # Create a small BertEncoder for testing. test_network = bert_encoder.BertEncoder( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) data, pooled = test_network([word_ids, mask, type_ids]) expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # If float_dtype is set to float16, the data output is float32 (from a layer # norm) and pool output should be float16. self.assertAllEqual(tf.float32, data.dtype) self.assertAllEqual(tf.float16, pooled.dtype) @parameterized.named_parameters( ("all_sequence", None, 21), ("output_range", 1, 1), ) def test_network_invocation(self, output_range, out_seq_len): hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 # Create a small BertEncoder for testing. test_network = bert_encoder.BertEncoder( vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, output_range=output_range) # Create the inputs (note that the first dimension is implicit). word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) data, pooled = test_network([word_ids, mask, type_ids]) # Create a model based off of this network: model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) # Invoke the model. We can't validate the output data here (the model is too # complex) but this will catch structural runtime errors. batch_size = 3 word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint( num_types, size=(batch_size, sequence_length)) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[1], out_seq_len) # Creates a BertEncoder with max_sequence_length != sequence_length max_sequence_length = 128 test_network = bert_encoder.BertEncoder( vocab_size=vocab_size, hidden_size=hidden_size, max_sequence_length=max_sequence_length, num_attention_heads=2, num_layers=3, type_vocab_size=num_types) data, pooled = test_network([word_ids, mask, type_ids]) model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[1], sequence_length) # Creates a BertEncoder with embedding_width != hidden_size test_network = bert_encoder.BertEncoder( vocab_size=vocab_size, hidden_size=hidden_size, max_sequence_length=max_sequence_length, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, embedding_width=16) data, pooled = test_network([word_ids, mask, type_ids]) model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[-1], hidden_size) self.assertTrue(hasattr(test_network, "_embedding_projection")) class BertEncoderV2CompatibilityTest(tf.test.TestCase): def tearDown(self): super().tearDown() tf_keras.mixed_precision.set_global_policy("float32") def test_weights_forward_compatible(self): batch_size = 3 hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 kwargs = dict( vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types) word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint( num_types, size=(batch_size, sequence_length)) data = dict( input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data) # Create small BertEncoders for testing. new_net = bert_encoder.BertEncoderV2(**kwargs) _ = new_net(data) kwargs["dict_outputs"] = True old_net = bert_encoder.BertEncoder(**kwargs) _ = old_net(data) new_net._embedding_layer.set_weights(old_net._embedding_layer.get_weights()) new_net._position_embedding_layer.set_weights( old_net._position_embedding_layer.get_weights()) new_net._type_embedding_layer.set_weights( old_net._type_embedding_layer.get_weights()) new_net._embedding_norm_layer.set_weights( old_net._embedding_norm_layer.get_weights()) # embedding_dropout has no weights. if hasattr(old_net, "_embedding_projection"): new_net._embedding_projection.set_weights( old_net._embedding_projection.get_weights()) # attention_mask_layer has no weights. new_net._pooler_layer.set_weights(old_net._pooler_layer.get_weights()) for otl, ntl in zip(old_net._transformer_layers, new_net._transformer_layers): ntl.set_weights(otl.get_weights()) def check_output_close(data, net1, net2): output1 = net1(data) output2 = net2(data) for key in output1: self.assertAllClose(output1[key], output2[key]) check_output_close(data, old_net, new_net) def test_checkpoint_forward_compatible(self): batch_size = 3 hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 kwargs = dict( vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types) word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint( num_types, size=(batch_size, sequence_length)) data = dict( input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data) kwargs["dict_outputs"] = True old_net = bert_encoder.BertEncoder(**kwargs) old_net_outputs = old_net(data) ckpt = tf.train.Checkpoint(net=old_net) path = ckpt.save(self.get_temp_dir()) del kwargs["dict_outputs"] new_net = bert_encoder.BertEncoderV2(**kwargs) new_ckpt = tf.train.Checkpoint(net=new_net) status = new_ckpt.restore(path) status.assert_existing_objects_matched() # assert_consumed will fail because the old model has redundant nodes. new_net_outputs = new_net(data) self.assertAllEqual(old_net_outputs.keys(), new_net_outputs.keys()) for key in old_net_outputs: self.assertAllClose(old_net_outputs[key], new_net_outputs[key]) def test_keras_model_checkpoint_forward_compatible(self): batch_size = 3 hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 kwargs = dict( vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, output_range=None) word_id_data = np.random.randint( vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint( num_types, size=(batch_size, sequence_length)) data = dict( input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data) kwargs["dict_outputs"] = True old_net = bert_encoder.BertEncoder(**kwargs) inputs = old_net.inputs outputs = old_net(inputs) old_model = tf_keras.Model(inputs=inputs, outputs=outputs) old_model_outputs = old_model(data) ckpt = tf.train.Checkpoint(net=old_model) path = ckpt.save(self.get_temp_dir()) del kwargs["dict_outputs"] new_net = bert_encoder.BertEncoderV2(**kwargs) inputs = new_net.inputs outputs = new_net(inputs) new_model = tf_keras.Model(inputs=inputs, outputs=outputs) new_ckpt = tf.train.Checkpoint(net=new_model) status = new_ckpt.restore(path) status.assert_existing_objects_matched() new_model_outputs = new_model(data) self.assertAllEqual(old_model_outputs.keys(), new_model_outputs.keys()) for key in old_model_outputs: self.assertAllClose(old_model_outputs[key], new_model_outputs[key]) if __name__ == "__main__": tf.test.main()