# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test decoding utility methods.""" import abc import tensorflow as tf, tf_keras from official.nlp.modeling.ops import decoding_module def length_normalization(length, dtype): """Return length normalization factor.""" return tf.pow(((5. + tf.cast(length, dtype)) / 6.), 0.0) class TestSubclass(decoding_module.DecodingModule, metaclass=abc.ABCMeta): def __init__(self, length_normalization_fn=length_normalization, extra_cache_output=True, dtype=tf.float32): super(TestSubclass, self).__init__( length_normalization_fn=length_normalization, dtype=dtype) def _create_initial_state(self, initial_ids, initial_cache, batch_size): pass def _grow_alive_seq(self, state, batch_size): pass def _process_finished_state(self, finished_state): pass def _get_new_finished_state(self, state, new_seq, new_log_probs, new_finished_flags, batch_size): pass def _finished_flags(self, topk_ids, state): pass def _continue_search(self, state): pass def _get_new_alive_state(self, new_seq, new_log_probs, new_finished_flags, new_cache): pass class DecodingModuleTest(tf.test.TestCase): def test_get_shape_keep_last_dim(self): y = tf.constant(4.0) x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5]) shape = decoding_module.get_shape_keep_last_dim(x) self.assertAllEqual([None, None, None, 5], shape.as_list()) def test_shape_list(self): x = tf.ones([7, 1]) shape = decoding_module.shape_list(x) self.assertAllEqual([7, 1], shape) def test_inf(self): d = TestSubclass() inf_value = d.inf() self.assertAllEqual(inf_value, tf.constant(10000000., tf.float32)) def test_length_normalization(self): d = TestSubclass() normalized_length = d.length_normalization_fn(32, tf.float32) self.assertAllEqual(normalized_length, tf.constant(1.0, tf.float32)) if __name__ == '__main__': tf.test.main()