# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for resnet_deeplab models.""" # Import libraries from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from official.vision.modeling.backbones import resnet_deeplab class ResNetTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (128, 50, 4, 8), (128, 101, 4, 8), (128, 152, 4, 8), (128, 200, 4, 8), (128, 50, 4, 16), (128, 101, 4, 16), (128, 152, 4, 16), (128, 200, 4, 16), ) def test_network_creation(self, input_size, model_id, endpoint_filter_scale, output_stride): """Test creation of ResNet models.""" tf_keras.backend.set_image_data_format('channels_last') network = resnet_deeplab.DilatedResNet(model_id=model_id, output_stride=output_stride) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) print(endpoints) self.assertAllEqual([ 1, input_size / output_stride, input_size / output_stride, 512 * endpoint_filter_scale ], endpoints[str(int(np.math.log2(output_stride)))].shape.as_list()) @parameterized.parameters( ('v0', None, 0.0, False, False), ('v1', None, 0.0, False, False), ('v1', 0.25, 0.0, False, False), ('v1', 0.25, 0.2, False, False), ('v1', 0.25, 0.0, True, False), ('v1', 0.25, 0.2, False, True), ('v1', None, 0.2, True, True), ) def test_network_features(self, stem_type, se_ratio, init_stochastic_depth_rate, resnetd_shortcut, replace_stem_max_pool): """Test additional features of ResNet models.""" input_size = 128 model_id = 50 endpoint_filter_scale = 4 output_stride = 8 tf_keras.backend.set_image_data_format('channels_last') network = resnet_deeplab.DilatedResNet( model_id=model_id, output_stride=output_stride, stem_type=stem_type, resnetd_shortcut=resnetd_shortcut, replace_stem_max_pool=replace_stem_max_pool, se_ratio=se_ratio, init_stochastic_depth_rate=init_stochastic_depth_rate) inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) print(endpoints) self.assertAllEqual([ 1, input_size / output_stride, input_size / output_stride, 512 * endpoint_filter_scale ], endpoints[str(int(np.math.log2(output_stride)))].shape.as_list()) @combinations.generate( combinations.combine( strategy=[ strategy_combinations.cloud_tpu_strategy, strategy_combinations.one_device_strategy_gpu, ], use_sync_bn=[False, True], )) def test_sync_bn_multiple_devices(self, strategy, use_sync_bn): """Test for sync bn on TPU and GPU devices.""" inputs = np.random.rand(64, 128, 128, 3) tf_keras.backend.set_image_data_format('channels_last') with strategy.scope(): network = resnet_deeplab.DilatedResNet( model_id=50, output_stride=8, use_sync_bn=use_sync_bn) _ = network(inputs) @parameterized.parameters(1, 3, 4) def test_input_specs(self, input_dim): """Test different input feature dimensions.""" tf_keras.backend.set_image_data_format('channels_last') input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) network = resnet_deeplab.DilatedResNet( model_id=50, output_stride=8, input_specs=input_specs) inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) _ = network(inputs) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( model_id=50, output_stride=8, stem_type='v0', se_ratio=0.25, init_stochastic_depth_rate=0.2, resnetd_shortcut=False, replace_stem_max_pool=False, use_sync_bn=False, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, ) network = resnet_deeplab.DilatedResNet(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = resnet_deeplab.DilatedResNet.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()